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Abstract

We propose a causal analogue to the predictive R2: a measure of the
share of variation in an outcome causally explained by a variable.
This “causal R2” (CR2) can be interpreted as the goodness‐of‐fit of
a causal model. CR2 is identified by combining observational and
experimental data.We illustrate the measure in several applications.
Spring protection causally explains 30% of water quality in Kenyan
data. Class size predicts 8%of reading test scores but causally explains
only about 3%. Institutions causally explain one‐fifth of the variation
in national income. Salt intake raises blood pressure similarly for
men and women, but explains much less variation among women.
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1. Introduction

Howmuch of the variation in an outcome 𝑌 does a variable 𝑋 explain? Questions of this form
are central to the social sciences: Across workers, what share of wage dispersion is explained
by differences in education (Mincer 1974; Card 1999)? Across cities, what share of variation
in growth is explained by zoning (Saiz 2010; Glaeser 2011)? Across countries, what share of
variation in income is explained by institutions (Hall and Jones 1999; Acemoglu et al. 2001)?

If by “explain” we mean “predict”, the R2 answers these questions. Yet R2 receives little
emphasis in economics, precisely becausewe typically seek causal explanations: if𝑋 forecasts𝑌, but does not causally affect it, then 𝑋 does not truly “explain” variation.Evaluating these
causal explanations requires assessing howmuch variation in an outcome is attributable to
a given cause. For instance, to assess the view that institutions are the fundamental cause
of differences in national income, we need a measure of the share of variation in national
income caused by differences in institutions. Existing fit statistics such as the R2 depend only
on the joint distribution of (𝑌 , 𝑋), and hence cannot untangle correlation from causation.

By contrast, the causal inference literature estimates the effect of changes in 𝑋 on changes in 𝑌
(e.g., howmuch an extra year of school raiseswages), but not whether observed variation in 𝑌 is
explained by observed variation in 𝑋. To see this distinction in an extreme case, note that if all
workers had identical schooling, educationwould explain no variation inwages, nomatter its
causal effect.1 More generally, even when 𝑋 has a large causal effect on 𝑌 and a large variance,
it may account for little of the observed cross‐sectional variance in 𝑌: a highly‐effective tutoring
program targeted at struggling students may have large causal effects, but fail to explain
variation in test scores; indeed, if assignment is sufficiently negatively‐selected on potential
outcomes, the programmay even reduce variance in scores. Thus, existing causal tools tell us
the causal effect of 𝑋 on 𝑌, but not howmuch of 𝑌ʼs variance 𝑋 explains. To our knowledge,
there is no measure of the variation in an outcome causally explained by a variable.

This paper proposes such a measure. Recall that the (non‐parametric) population R2 is the
proportional reduction in population mean squared error (MSE) achieved by residualizing 𝑌
with respect to its conditional expectation 𝔼[𝑌 ∣ 𝑋].We view 𝔼[𝑌 ∣ 𝑋] as a predictive model for 𝑌,
and R2 as its goodness‐of‐fit. Our corresponding causal model is the interventional expectation𝔼[𝑌 ∣∣ 𝑋], defined as the expected value of 𝑌 conditional on intervening to set 𝑋 (Imbens 2014).
We define the (non‐parametric) population causal R2 (CR2) as the proportional reduction in
population MSE achieved by residualizing 𝑌with respect to this interventional expectation.

We interpret CR2 as the share of variance causally explained. Intuitively, for each unit 𝑖, we
compare the realized outcome 𝑌𝑖 to the outcome one would expect if only 𝑋 caused variation,𝔼[𝑌 ∣∣ 𝑋𝑖]. We treat the squared residual (𝑌𝑖 − 𝔼[𝑌 ∣∣ 𝑋𝑖])2 as causally unexplained variation.

1Likewise, a pre‐market drug that has not been released explains no variation in health outcomes, no matter
its effects in a clinical trial. Many economics RCTs also involve treatments to which the population of interest
has no previous exposure (e.g., Miguel and Kremer 2004; Kleven et al. 2011; Breza and Chandrasekhar 2019).
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Averaging over units gives expected unexplained variation; dividing by the outcome variance
gives the share of variance that is unexplained. Our CR2 is the complement of this value,
which we interpret as the share of variance causally explained.

We view our approach as the natural extension of R2 to causal models. Nonetheless, we
are not aware of any prior work proposing this approach.When describing the measureʼs
properties, we show that CR2 is intuitive: it equals 0 if 𝑋 has no causal effect, and 1 if 𝑋 fully
determines it; it is unitless; and it is bounded above by the predictive R2, with equality if
observables are independent of unobservables.While the standard predictive R2 is weakly
positive, the causal R2 can be positive, when the variables of interest contribute to variation
in the outcome, or negative, when they tend to suppress variation in the outcome.

We then turn to identification and estimation. The causal R2 combines (i) the interventional
expectation, which represents the causal effect of 𝑋 on 𝑌, and (ii) the joint distribution
of (𝑌 , 𝑋), which determines the interventional expectationʼs goodness‐of‐fit. Accordingly,
identification requires (i) an observational dataset, containing realizations of (𝑌 , 𝑋) from the
population, and (ii) an experimental dataset, containing realizations of (𝑌 ′, 𝑋 ′) in which 𝑋 ′ is
randomly assigned, potentially affecting 𝑌 ′.2 A plug‐in estimator is consistent, and we assess
its performance in simulations. Inference follows by the boostrap or the Delta method.

We demonstrate the practical relevance of CR2 in five applications. First, we apply the mea‐
sure to data from Kremer et al. (2011), who randomized spring protection in Kenya. Spring
protection both predicts and causally explains about a third of variation in water quality. By
contrast, in Project STAR, variation in class size predicts 8% (5%) of variation in reading (math)
scores, but causally explains only 3% (2%): the predictive power of class size mostly reflects
omitted variables, not causal effects. Applying CR2 to the settler mortality instrument in Ace‐
moglu et al. (2001), around one fifth of cross‐country income variation is causally explained
by differences in institutionsʼ extractiveness. Similarly, in Fluegge (2025), around one‐fifth of
variation in U.S. city growth over the last century is causally explained by exposure to the
1918 Influenza Pandemic. Last, we assess the share of variation in blood pressure explained
by sodium intake: sodium causally explains 7% of variation in menʼs blood pressure, but
less than 1% in women, despite similar causal effects. The gender difference arises because
womenʼs blood pressure varies more for reasons unrelated to sodium.

These applications illustrate the usefulness of CR2. Descriptively, the measureʼs value is
twofold. First, it evaluates the extent to which a theory provides a complete explanation of
variation in the outcome. Second, it indicates the value of future research: if the explained
share is low, then we do not yet have a complete theory of the outcome.

Normatively, a policy‐maker may care about 𝑋, even though it explains little variation in 𝑌.
Goldberger (1979), writing in the context of genetic heritability, gives the example of eyesight:
population variance in eyesight is largely genetic, but there is still great value in prescribing

2Our baseline setting is a randomized experiment, but the approach extends to quasi‐experimental variation.
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glasses.3 For this reason, CR2 is more relevant to a scientist seeking to understand the sources
of naturally‐occurring variation in 𝑌, than to a policy‐maker seeking to affect the value of 𝑌.4
Of course, there are other plausible definitions of causal explanatory power, some of which
we describe. The CR2 has the advantage of being simple, unitless, portable, and easy to
estimate and interpret. We return to these advantages throughout the paper.

Related literature. An existing literature extends R2 to settings other than causal models.5 A
small literature uses R2 to bound omitted variable bias (Oster 2019; Cinelli and Hazlett 2020,
2025) or external validity bias (Andrews and Oster 2019). Those papers use the predictive R2
as an input towards assessing causal effects; we instead develop a causal analogue of the R2.6
We also contribute to the literature on causal attribution and the causes of effects. The causal
attribution literature asks: given two observed variables (𝑋1, 𝑋2), and a known potential
outcome function 𝑌(𝑋1, 𝑋2), howmuch of the joint effect of (𝑋1, 𝑋2) should be attributed to 𝑋1
vs. 𝑋2 (e.g., Datta et al. 2016; Heskes et al. 2020; Jung et al. 2022;Weitze 2025)? By contrast, we
compare the variation explained by observed variables to the total variation in 𝑌. The causes of
effects literature asks whether a given unitʼs outcome would have differed under a different
treatment (e.g., Pearl 1999; Halpern and Pearl 2005; Yamamoto 2012; Dawid and Musio 2022);7

we instead ask what share of population variance can be attributed to a given cause.

Gelman and Imbens (2013) distinguish forward causal questions (effects of causes) from
reverse causal questions (apportioning outcomes to causes), which they view as model‐
checking. In their view, asking about the causes of an outcome involves assessing how well
an existing model can explain the outcome, and whether it misses important determinants:

“[I]f we ask,Why do incumbents get more contributions than challengers, ... get some
measure for candidate quality ... and still see a large and statistically significant differ‐
ence between the funds given to incumbents and challengers, then it seems we need
more explanation.” (p. 3)

The CR2 formalizes this idea: it measures howwell a causal model explains the outcome, and
howmuch remains unexplained.

We also connect to the economics literature on completeness, which compares the predictive
power of theory‐constrained vs. unconstrainedmodels (e.g., Peysakhovich and Naecker 2017;

3Manski (2011) echoes this point. Relatedly, the share of variance causally explained is not policy‐invariant:
for instance, the share of variance in eyesight explained by genetics will be smaller in a population with glasses.

4Indeed, many economic experiments—such as those estimating the effect of immutable characteristics
(Bertrand and Mullainathan 2004; Neumark et al. 2019)— cannot be interpreted as evaluating policy counterfac‐
tuals, and can only be understood as explaining differences in outcomes.

5These settings include survival analysis (e.g., Harrell et al. 1982), non‐linear models (e.g., McFadden 1973;
Nagelkerke 1991; Li andWang 2019), and Bayesian models (e.g., Gelman and Pardoe 2006; Gelman et al. 2019).
Recent work discusses “generalized” (Wang et al. 2017) and “out‐of‐sample” (Hawinkel et al. 2024) R2.

6Similarly, “heritability” in genetics, and the “attributable fraction” in epidemiology measure the share of
variation in a characteristic attributable to some source—genetics for heritability (Visscher et al. 2008), and a
risk factor for the attributable fraction (Porta 2014). Both measures assess predictive, not causal, relationships.

7This literature has received limited application in economics (e.g., Ganong and Noel 2023).
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Apesteguia and Ballester 2021; Fudenberg et al. 2022).We study causal, not predictivemodels,
though our metric can be viewed as the performance of a model constrained to be causal.

Finally, our work relates to the external validity literature. In our baseline setting, an analyst
samples observations from the population, and assigns units to either an observational or
an experimental setting. Even absent selection into the experiment, the joint distribution
of treatment and unobservables in the experiment differs from the population distribution
by construction;8 in consequence, the share of variation causally explained within the experi‐
ment—which we call the “experimental R2”—differs from the share explained in the population
(the causal R2). Under some assumptions, we can extend our results to the case in which the
experiment is conducted on a non‐random subpopulation, following the transportability
literature (Imbens 2010; Angrist and Fernández‐Val 2013; Mogstad and Torgovitsky 2018).

Outline. Section 2 presents an illustrative example which introduces some of the main
ideas. Section 3 defines CR2. Section 4 discusses properties. Section 5 covers identification,
estimation, and inference. Sections 6–7 present simulations and applications. Proofs are in
the appendix; some extra results are in the Online Appendix.

2. An illustrative example

We first illustrate our approach in a simple example. Say we study the relation between
student test scores and class sizes. Let 𝑌𝑖 denote student 𝑖ʼs test score, 𝐶𝑖 class size, and 𝐼𝑖
family income. To give the intuition, we begin by imposing a simple constant effects model:

𝑌𝑖(𝐶𝑖, 𝐼𝑖) = 𝛼 + 𝛽𝐶𝑖 + 𝛾𝐼𝑖,(1)

(𝐶𝑖𝐼𝑖 ) ∼ 𝒩(𝜇, Σ), 𝜇 = (𝜇𝐶𝜇𝐼) , Σ = (1 𝜌𝜌 1) ,(2)

where (1) is the potential outcome function for test scores, and (2) is the joint distribution of
class size and income, which jointly determine the distribution of test scores.9 We observe
scores and class size, but not income.10 In particular, we sample observational data—draws
of (𝑌𝑖, 𝐶𝑖)—and also run an experiment that samples students from the population, randomly
assigns class sizes (leaving family income unchanged), and records resulting test scores.

What share of variation in test scores is explained by class size?Wefirst consider this question
in the observational data; Figure 1(A) presents example realizations. The corresponding line
of best fit converges, as the sample grows, to the conditional expectation function 𝑌𝑃(𝐶𝑖) ≔

8Since treatment is assigned independent of unobservables, the distribution of the outcome is different than
in observational data, in which treatment and unobservables covary.

9That is,𝑌 ∼ 𝒩(𝛼+𝛽𝜇𝐶+𝛾𝜇𝐼, 𝛽2+𝛾2+2𝛽𝛾𝜌), with Cov[𝑌,𝐶] = 𝛽+𝛾𝜌. For convenience, the example treats
all variables as though they are continuous.

10If we observed (𝑌𝑖, 𝐶𝑖, 𝐼𝑖), we could recover (1) and fully explain variation in test scores. The problem arises
only when some determinants are unobserved.
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𝔼[𝑌𝑖 | 𝐶𝑖] = 𝛼𝑃 +𝛽𝑃𝐶𝑖, for (𝛼𝑃, 𝛽𝑃) ≔ (𝛼+ 𝛾𝜇𝐼 −𝛾𝜌𝜇𝐶, 𝛽 + 𝛾𝜌). This is the best predictive model: it
minimises population squared prediction error. Its fit—the standard R2—measures the share
of variation in scores that class size predicts, but not howmuch it causally explains: a high R2
can arise even if class size has no causal effect (𝛽 = 0). More generally, since the causal effect
of 𝐶 on 𝑌 is not identified by the joint distribution of (𝑌 , 𝐶), the observational dataset does
not contain all the information necessary to compute variance causally explained.

Figure 1. Illustrative example: predictive and causal fit of models relating test scores to class size

(A) Predictive relation

Obs. R2 = 1 - MSE
OBS

(YP)/Var
OBS

(Y)

48

50

52

54

56

Te
st

 S
co

re
 (Y

i)

17 19 21 23
Class Size (C

i
)

Pred: YP(C
i
) = αP + βPC

i

(B) Causal relation in experiment
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(C) Goodness‐of‐fit of causal model
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Note: This figure presents an example of assessing the predictive and causal fit ofmodels relating test
scores (𝑌𝑖) to class size (𝐶𝑖). Panel (A) presents example realizations of observational data. Panel (B)
presents example realizations of experimental data. Panel (C) contrasts the fit of the best predictive
and causal models in the observational data.

Motivated by this fact, we turn to the experimental data (Figure 1(B)). Since class size is
randomized, the best fit line converges to the interventional expectation 𝑌𝐶(𝐶𝑖) ≔ 𝔼[𝑌𝑖 ∣∣ 𝐶𝑖] =𝑌𝐶(𝐶𝑖) = 𝛼𝐶 + 𝛽𝐶𝑖, for 𝛼𝐶 ≔ 𝛼 + 𝛾𝜇𝐼, where ∣∣ denotes “conditioning by intervention” (Imbens
2014, p. 10).11 We call 𝑌𝐶 the best causal model. It typically differs from the predictive model𝑌𝑃 because of omitted variable bias: in Figure 1(B), 𝑌𝐶 is flatter than 𝑌𝑃, as expected if family
income increases test scores (𝛾 > 0) and correlates with smaller classes (𝜌 < 0).
The best causal model recovers the true causal effect 𝛽. Because of this, there is some tempta‐
tion to interpret the R2 in the experimental data as the share of variation in 𝑌 that is causally
explained by variation in 𝐶. Unfortunately, this “experimental R2” reflects the share of varia‐
tion in 𝑌 that is causally explained by 𝐶 in the experiment, but not in the population.

These quantities differ because the experimental treatment distribution generally differs
from the population distribution, for two reasons. First, themarginal distributions differ: to
return to an example in the introduction, a trial of a pre‐market drug can yield a positive
R2 even though the drug has not yet been released to the population, and hence explains no
existing health outcomes. Second, even if the marginal distributions coincide—for instance,
because the experimentwasdesigned ex ante tomimic thepopulationdistribution, or because
it has been reweighted ex post—the joint distribution of the treatment and unobservables in
the experiment will differ from the population joint distribution. This is by construction:

11We define this notation formally in Section 3.
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randomization in the experiment ensures that𝐶 is independent of unobserved family income𝐼. As a result, the distribution of the outcome will differ from that in the population. Since
we aim to explain the outcome in the population, the experimental R2 never suffices.

For this reason, assessing the share of variance causally explained requires assessing the fit
of the causal model in the observational data (Panel C). One tempting approach is to compute
the variance of the best causal model in the observational data, and to define the ratio of this
variance to the variance of 𝑌 as the share of variance explained (that is, to define the share
of variance explained as Var(𝑌𝐶)

Var(𝑌) = 𝛽2𝛽2+𝛾2+2𝛽𝛾𝜌). We view this as a reasonable measure of the
movement created by class size, but not of the share of variance causally explained by class size.
One way to see this is to impose the logical requirement that the share of variance causally
explained not exceed 100%: there is no such guarantee for the expression above, and indeed
if class size and parent income are sufficiently negatively correlated, then the measure will
exceed 100%.12 More generally, the expression above accounts for the effects of class size on
test scores, but not whether class size has explanatory power, in the sense that the effects of
class size account for the observed variation in test scores.

Instead, we take the following approach. Take a student with score 𝑦𝑖 and class size 𝑐𝑖. Class
size causally explains a score of 𝛼𝐶 + 𝛽𝑐𝑖. The residual 𝑦𝑖 − 𝛼𝐶 − 𝛽𝑐𝑖 (the vertical gap between
the causal model and a point 𝑖) is unexplained andmust come from another cause. Summing
these squared residuals and dividing by the outcome variance gives the share of variance
not causally explained; the complement is the share of variation explained. This parallels
the usual R2, but here the variation is explained causally, not just predictively.We call this
measure the causalR2 (CR2). Throughout the paper,we argue that thismeasure is an appealing
and natural way to adapt the R2 to causal models.

3. Defining the goodness‐of‐fit of a causal model

This section develops the causal R2 as the fit of a causal model.We formalize the heuristic
approach described in the last section, relaxing the simplifying assumptions of a linear,
constant‐effects model. We begin by describing our setting of interest. We then define causal
models and model fit. Finally, we define non‐parametric and linear CR2.
3.1. Setting

We use the standard Rubin Causal Model with two primitives: 𝐾 explanatory variables and a
potential outcome function. Each feature 𝑋𝑘 is a real‐valued random variable taking values
in 𝒳𝑘. The feature vector is 𝑋 ≔ (𝑋1,… , 𝑋𝐾) taking values in 𝒳 ≔ 𝒳1 × ⋯ × 𝒳𝐾, with joint
distribution 𝑃𝑋. The features and the potential outcome function 𝑌∶ 𝒳 → 𝒴 together determine
the real‐valued outcome 𝑌 ≔ 𝑌(𝑋).

12This will be the case if 𝜌 < − 𝛾2𝛽 , assuming that 𝛾, 𝛽 > 0.
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We interpret 𝑌(𝑥𝑖) as the outcome for a unit 𝑖with feature realizations 𝑥𝑖. That is, we treat the
potential outcome function 𝑌(⋅) as a population object, rather than defining a unit‐specific𝑌𝑖(⋅). This notation is without loss of generality, since 𝑋 includes all sources of variation
in 𝑌.13 The effects of features may differ across units, but the sources of heterogeneity are
included in 𝑋. We adopt this notation to emphasize that the goal of interest is understanding
the determinants of variation in 𝑌, which comes fully from variation in 𝑋.14
The potential outcome function 𝑌(⋅) and the distribution of features 𝑃𝑋 together pin down
the joint distribution of the outcome and features, 𝑃𝑌,𝑋, with CDF:

𝐹𝑌,𝑋(𝑦, 𝑥1,… , 𝑥𝐾) = ∫𝒳 𝟙{𝑌(𝑣1,…,𝑣𝐾)≤𝑦}𝟙{𝑣1≤𝑥1,…,𝑣𝐾≤𝑥𝐾} d𝑃𝑋(𝑣1,… , 𝑣𝐾).
Features may be observed or unobserved. Write the observed features as 𝑋𝑂 ≔ (𝑋1,… , 𝑋𝑂)
for 𝑂 ≤ 𝐾, and the unobserved features as 𝑋𝑈 ≔ (𝑋𝑂+1,… , 𝑋𝐾). Denote by 𝑃𝑌,𝑋𝑂 the marginal
distribution of (𝑌 , 𝑋𝑂) induced by 𝑃𝑌,𝑋. We assume throughout that the outcome and features
have finite second moments. For section 5 on identification, estimation, and inference, we
assume finite fourth moments.

3.2. Predictive and causal models

We seek to understand the relation between the outcome and the observed features. Formally,
we describe a relation as amodel: a function from 𝒳𝑂 to 𝒴. If we observe all features (𝑂 = 𝐾),
a natural model is the potential outcome function 𝑌(⋅), which perfectly predicts and causally
explains 𝑌.We think of 𝑌(⋅) as the truemodel. If we only observe some features (𝑂 < 𝐾), models
of predictive vs causal relationsmay differ: a featuremight predict, but not cause an outcome.

Below, we formally define the best predictive model and the best causal model of 𝑌 given
observed features.15 Since unobserved features may affect the outcome, these models may
incur error.We evaluate this error using quadratic loss; other loss functions yield similar
results. All expectations and variances are with regard to 𝑃𝑋 unless otherwise specified.

Definition 1. Given observed features 𝑋𝑂 and an outcome 𝑌:
13Similar notation appears in, e.g., Vytlacil (2002), Hernán and Robins (2025), and Pearl (2009). To see formally

that this is without loss of generality, adopt the notation of Vytlacil (2002): let (Ω,ℱ,ℙ) denote the probability
space, with 𝜔 an element of Ω, and for each 𝑥 ∈ 𝒳, denote by 𝑌𝑥(𝜔) the random variable corresponding to
the potential outcome under 𝑥. Instead of this unit‐specific potential outcome, we redefine the feature space 𝑋
to include any latent factors or indeed the unit index itself: 𝑋̃(𝜔) = (𝑋(𝜔),𝜔). In that case, we can define the
population‐level 𝑌(⋅) by 𝑌(𝑋̃(𝜔)) = 𝑌𝑋(𝜔)(𝜔) for all 𝜔.

14An alternative approach would be to define a unit‐level potential outcome function 𝑌𝑖 = 𝑌̂(𝑋𝑂𝑖 , 𝑋𝑈𝑖 ) + 𝜖𝑖, for
some noise term 𝜖𝑖 that is mean‐zero and independent of the observed and unobserved features, and then assess
the share of variation in 𝑌̂(𝑋𝑂𝑖 , 𝑋𝑈𝑖 ) that is causally explained by variation in 𝑋𝑂𝑖 , ignoring the role of 𝜖𝑖. This
approach is in the spirit of Oster (2019), who defines a maximum plausible value of R‐squared, called Rmax and
compares the observed R2 to Rmax. This raises the difficulty of establishing a plausible value for Rmax, which Oster
(2019) considers in detail. A similar issue is discussed in the literature on risk adjustment in health insurance
plans (see section 3.2.6Wynand et al. 2000). We do not pursue such an approach here.

15When all features are observed, thesemodels coincide with the truemodel (the potential outcome function).
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(i) the best predictive model is the conditional expectation:

𝑌𝑃𝑋𝑂(𝑥𝑂) ≔ argmin𝑧 𝔼[(𝑧 − 𝑌)2 ∣ 𝑋𝑂 = 𝑥𝑂] = 𝔼[𝑌 ∣ 𝑋𝑂 = 𝑥𝑂] .
(ii) the best causal model is the interventional expectation, or average potential outcome:16

𝑌𝐶𝑋𝑂(𝑥𝑂) ≔ argmin𝑧 𝔼[(𝑧 − 𝑌)2 ∣∣ 𝑋𝑂 = 𝑥𝑂] = 𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂] ,
where ∣∣ “condition[s] by intervention” (Imbens 2014, p. 10):17 𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂] ≔ 𝔼𝑃𝑋𝑈[𝑌(𝑥𝑂, 𝑋𝑈)].

To give more intuition on causal models, we offer three perspectives. First, causal and pre‐
dictive models differ only in the distribution of unobserved features:

Predictive: 𝑌𝑃𝑋𝑂(𝑥𝑂) = 𝔼𝑃𝑋𝑈∣𝑋𝑂=𝑥𝑂[𝑌(𝑥𝑂, 𝑋𝑈)] , Causal: 𝑌𝐶𝑋𝑂(𝑥𝑂) = 𝔼𝑃𝑋𝑈[𝑌(𝑥𝑂, 𝑋𝑈)] ,
The best predictivemodel traces the expected value of 𝑌 as 𝑋𝑂 varies, accounting for the covari‐
ance of 𝑋𝑂 and 𝑋𝑈. The best causal model traces the expected value of 𝑌 as 𝑋𝑂 is manipulated
independently of 𝑋𝑈. Intuitively, causal analysis severs the covariance between observed and
unobserved features (Holland 1986; Angrist and Pischke 2009).

Second, the best predictive model is the conditional expectation in the population, whereas
the best causal model is the conditional expectation in an experiment that randomly assigns𝑋𝑂. This view connects the best predictive and causal models to Figure 1.

Third, the best causal model equals the average potential outcome that only depends on ob‐
servables. Let𝑌𝑋𝑂(𝑥𝑂) = 𝑌(𝑥𝑂, 𝑋𝑈)denote that potential outcome function.Then,𝔼[𝑌𝑋𝑂(𝑥𝑂)] =𝑌𝐶𝑋𝑂(𝑥𝑂). This view relates the causal model to causal effects. The average treatment effect of
changing 𝑋𝑂 from one realization to another (say from 0 to 1) is the difference in the best
causal model evaluated at those points:

ATE = 𝔼[𝑌𝑋𝑂(1) − 𝑌𝑋𝑂(0)] = 𝔼[𝑌𝑋𝑂(1)] − 𝔼[𝑌𝑋𝑂(0)] = 𝑌𝐶𝑋𝑂(1) − 𝑌𝐶𝑋𝑂(0).
Similarly, the association, or predictive “effect”, is 𝑌𝑃𝑋𝑂(1) − 𝑌𝑃𝑋𝑂(0). In that way, causal and
predictive models models encapsulate how 𝑌 changes with 𝑋𝑂, depending on whether we
consider the change in 𝑌 associated with a change in 𝑋𝑂, or caused by a change in 𝑋𝑂.18
3.3. Risk and fit

We now define goodness‐of‐fit, and apply it to causal models.
16We make the standard stable unit treatment value assumption (SUTVA).
17Other notation exists for this interventional expectation. Neyman (1923) calls it the best estimate of potential

yields; see Imbens and Rubin (2015). It is 𝔼[𝑌(𝑥𝑂)] in Hernán and Robins (2006), and 𝔼[𝑌 ∣ do(𝑥𝑂)] in Pearl (1995).
We believe the ∣∣ notation originated in Lauritzen and Richardson (2002).

18We have so far equated observable andmanipulable features. In practice, some variables may be observable
but not manipulable.We return to this distinction in section 5.5.
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Definition 2. The risk of a model𝑀 is ℛ(𝑀) ≔ 𝔼[(𝑀(𝑋𝑂) − 𝑌(𝑋))2].
When all features are observed, the true model 𝑌(⋅) perfectly explains the outcome, and so
achieves zero risk: ℛ(𝑌(⋅)) = 0. Conversely, we may consider a baseline model, 𝔼[𝑌], which is
the best causal and predictive model when no features are observed, with risk Var[𝑌].
Definition 3. The fit of model𝑀 is its proportional reduction in risk relative to the baseline
model: 𝐺(𝑀) = Var[𝑌] − ℛ(𝑀)

Var[𝑌] .
The fit of the baseline model is 0; the fit of the true model is 1. The fit of the best predictive
model is the familiar non‐parametric predictive R2: R2(𝑋𝑂) ≔ 𝐺(𝑌𝑃𝑋𝑂).19 We define the non-
parametric causal R2 as the fit of the best causal model: CR2(𝑋𝑂) ≔ 𝐺(𝑌𝐶𝑋𝑂).
3.4. Parametric causal R2
So far, models minimize error non‐parametrically. In practice, researchers often estimate
parametric models: for instance, the standard linear R2 measures fit of a linear predictive
model.We can analogously define a parametric CR2. Let ℱ be our function class of interest,
e.g., all linearmodels,ℱlin;ℱmaybemotivatedbyprior knowledge about the relationbetween𝑌 and 𝑋𝑂, or by a need for tractability. 20

Definition 4. Given observed features 𝑋𝑂, an outcome 𝑌, and a function class ℱ:
(i) the best predictive model under ℱ is 𝑌𝑃ℱ,𝑋𝑂 ≔ argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌)2 || 𝑋𝑂 = 𝑥𝑂]] ,

with fit R2ℱ(𝑋𝑂) ≔ 𝐺(𝑌𝑃ℱ,𝑋𝑂);
(ii) the best causal model under ℱ is 𝑌𝐶ℱ,𝑋𝑂 ≔ argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌)2 ∣∣ 𝑋𝑂 = 𝑥𝑂]], with

fit CR2ℱ(𝑋𝑂) ≔ 𝐺(𝑌𝐶ℱ,𝑋𝑂).
We call ℱwell-specified if it includes the best causal model 𝑌𝐶𝑋𝑂. Otherwise, ℱ ismisspecified.
The non‐parametric CR2 is nested as the case in which ℱ is unrestricted.

When ℱ is the class of linear functions, the best predictive model is the linear projection of 𝑌
on 𝑋𝑂; the best causalmodel is the linear projection of 𝑌 on 𝑋𝑂when 𝑋𝑂 is randomly assigned
in accordancewith its populationmarginal distribution. Define the linear causalR2,CR2

lin(𝑋𝑂),
as the fit of this model. Applying our definition of goodness‐of‐fit, it is simple to show that
this linear causal R2 simply replaces the observational OLS coefficients (𝛼OBS, 𝛽OBS) in the
definition of the predictive R2 with corresponding experimental coefficients (𝛼EXP, 𝛽EXP):
R2
lin(𝑋𝑂) = 1− 𝔼[(𝑌 − 𝛼OBS − (𝛽OBS)⊤𝑋𝑂)2]

Var[𝑌] , CR2
lin(𝑋𝑂) = 1− 𝔼[(𝑌 − 𝛼EXP − (𝛽EXP)⊤𝑋𝑂)2]

Var[𝑌] .
19The non‐parametric R2 can be traced back to Rényi (1959), and is defined formally in Doksum and Samarov

(1995). For recent discussions, see Li andWang (2019) and Fudenberg et al. (2022).
20We assumeℱ includes at least all constant models𝑀, and that it contains twomodels𝑀 and𝑀′ which differ,

in the sense that 𝔼[((𝑀(𝑋𝑂𝑖 ) −𝑀′(𝑋𝑂𝑖 ))2] > 0.
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4. Properties of the causal R2
Having defined the causal R2, we now discuss its properties.

4.1. Basic properties

Webeginwith some basic properties needed to interpretCR2 as the share of variance causally
explained.21 Sometimes we specify the outcome and write 𝐶𝑅2ℱ(𝑌 → 𝑋𝑂) for the causal 𝑅2 of
observed features 𝑋𝑂, outcome 𝑌, and function class ℱ.
Proposition1 (basicproperties). For any function classℱ, distribution of features𝑃𝑋, andpotential
outcome function 𝑌(⋅):

(i) The causal R2 is 0 if the observable features have no effect on the outcome:(∀𝑥𝑂, 𝑥𝑂′, 𝑥𝑈, 𝑌(𝑥𝑂, 𝑥𝑈) = 𝑌(𝑥𝑂′, 𝑥𝑈))⟹ CR2ℱ(𝑋𝑂) = 0.
(ii) If ℱ is well‐specified, the causal R2 is 1 if the observable features fully determine the outcome:(∀𝑥𝑂, 𝑥𝑈, 𝑥𝑈′ 𝑌(𝑥𝑂, 𝑥𝑈) = 𝑌(𝑥𝑂, 𝑥𝑈′))⟹ CR2ℱ(𝑋𝑂) = 1.
(iii) The causalR2 is strictly less than 1 if𝑌 varies evenafter interveningon𝑋𝑂:𝔼[Var[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂]] >0⟹ CR2ℱ(𝑋𝑂) < 1.
(iv) The causal R2 is 0 if the observable features do not vary: Var[𝑋𝑂] = 0⟹ CR2ℱ(𝑋𝑂) = 0.
(v) If ℱ is well‐specified, the causal R2 is 1 if the unobservable features do not vary: Var[𝑋𝑈] =0⟹ CR2ℱ(𝑋𝑂) = 1.
(vi) Define 𝑌 ′ = 𝑌 + 𝜀, for 𝜀 unobserved mean‐zero random noise independent of, and causally

unaffected by, 𝑋. Then the causal R2 for 𝑌 is larger in magnitude than the causal R2 for 𝑌 ′:|CR2ℱ(𝑌 → 𝑋𝑂)| ≥ |CR2ℱ(𝑌 ′ → 𝑋𝑂)|.
(vii) CR2 is not symmetric. Let there be one observable. In general, CR2ℱ(𝑌 → 𝑋𝑂) ≠ CR2ℱ(𝑋𝑂 → 𝑌).
Parts (i) and (ii) are limiting cases. If the observed features 𝑋𝑂 do not affect the outcome, they
explain no variation: CR2ℱ(𝑋𝑂) = 0. If instead 𝑋𝑂 fully determines the outcome—such that no
variation in the outcome remains after setting 𝑋𝑂—then CR2ℱ(𝑋𝑂) = 1, if ℱ is well‐specified.22

Part (iii) states that, if the observed features 𝑋𝑂 do not fully determine the outcome variable,
CR2ℱ(𝑋𝑂) < 1. Consider a single, discrete observable feature 𝑋𝑂, and an experiment with a
treatment arm for each possible level of 𝑋𝑂. If the outcome varies in at least one arm, an
unobservable must cause that variation: the observable does not explain all variation.

Parts (iv) and (v) also describe limiting cases. If observables do not vary in the population,
they explain no variation in the outcome. If only observables vary, they explain all variation.

Part (vi) is a comparative static: weakening the relation between the outcome and observed
features by adding noise attenuates their explanatory power. They explain less variation.

21These properties would also hold if we had defined risk from another loss function.
22The “well‐specified” assumption parallels the predictive R2: even if 𝑋 fully predicts 𝑌, the R2 from a linear

regression of 𝑌 on 𝑋 is less than 1 if the relation between 𝑌 and 𝑋 is non‐linear (Anscombe 1973).
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Part (vii) says that CR2 is not symmetric. 𝑌may explain a certain share of 𝑋𝑂, but 𝑋𝑂 might
explain a different share of 𝑌. This result is intuitive since causal relations are not symmetric:𝑋𝑂 may cause 𝑌, but not vice versa.

We consider these basic properties necessary for a measure of causally explained variation
causally. Some alternatives do not satisfy them. For instance, the predictive R2 violates (i),
(iii), and (vii). Online Appendix A discusses other seemingly intuitive measures, and shows
they lack one or more of the basic properties.

What is more, the CR2 is invariant to some transformations. In our view, this is conceptually
important as the share of variation explained by a variable should not change if the variable
is measures in different units. Education explains the same share of variation in wages, no
matter if wages are measured in dollars or cents, or if education is measured in years or days.

Proposition 2 (invariance to transformations). (i) The CR2 is invariant to affine transforma‐
tions of the outcome, andmonotone transformations of the features. That is, consider a sequence
of functions {𝑔𝑌, 𝑔1,… , 𝑔𝑂}, where 𝑔𝑌 is affine and strictly monotone, and each {𝑔𝑘}𝑂𝑘=1 is strictly
monotone. Let 𝑌 ′ = 𝑔𝑌(𝑌) and, for each 𝑘, 𝑋 ′𝑘 = 𝑔𝑘(𝑋𝑘). Then CR2(𝑌 ′ → 𝑋𝑂′) = CR2(𝑌 → 𝑋𝑂).

(ii) The CR2
lin is invariant to affine transformations of the outcome and features. That is, consider

a sequence of affine and strictly monotone functions {𝑔𝑌, 𝑔1,… , 𝑔𝑂}. Let 𝑌 ′ = 𝑔𝑌(𝑌) and, for
each observable 𝑘, 𝑋 ′𝑘 = 𝑔𝑘(𝑋𝑘). Then, CR2

lin(𝑌 ′ → 𝑋𝑂′) = CR2
lin(𝑌 → 𝑋𝑂).

4.2. Comparison of predictive and causal R2
Next, we describe the relationship between the causal and predictive R2.
Proposition 3 (relationbetweenpredictive and causalR2). For any function classℱ, distribution
of features 𝑃𝑋, and potential outcome function 𝑌(⋅):

(i) The causal R2 is bounded above by the predictive R2: CR2ℱ(𝑋𝑂) ≤ R2ℱ(𝑋𝑂).
(ii) If observables are independent of unobservables, the causal and predictive R2 coincide: 𝑋𝑂 ⟂⟂𝑋𝑈 ⟹ CR2ℱ(𝑋𝑂) = R2ℱ(𝑋𝑂).

Part (i) says the predictive R2 always weakly exceeds the causal R2. Intuitively, the best
predictive model maximises fit; the best causal model must perform weakly worse, since
any predictive power from confounding is purged in the CR2. This result has practical use.
Even without knowing the causal effect of variable, if it has little predictive power, it also has
little causal explanatory power. Part (ii) says that the predictive and causal R2 coincide when
observables are independent of unobservables.23 In that case, the best predictive model
equals the best causal model as there is no confounding. Their fit must also equal.

23For the linear CR2, orthogonality suffices.
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4.3. Possibility of negative values

Unlike the predictive R2, CR2 may be negative and non‐monotonic.

Proposition 4 (possibility of negativity and non‐monotonicity). (i) For anyℱ,R2ℱ is bounded
between 0 and 1, whereas CR2ℱ is bounded above by 1, but may be negative.

(ii) For any ℱ, R2ℱ increases as more features are observed, whereas CR2ℱ may fall.

Part (i) says that CR2 is bounded above by 1 and may be negative. This happens when the
observables suppress, rather than create, variance in the outcome. Consider the introductory
example. Suppose larger classes lower test scores while family income raises them. However,
say poorer kids attend smaller classes, e.g, as a policy to reduce inequality.With large enough
correlation between family income and class size, test scores and class sizemay be negatively
correlated. However, causally, class size lowers test scores. The negative causal effect fits the
positive association of test scores and class size worse than the baseline of no effect. Since fit
is the proportional reduction in risk relative to a baseline of no effect, the CR2 is negative.24
A negative CR2 indicates that observed features suppress variation in the outcome: there
“should” be more variation in the outcome than we actually observe. A similar phenomenon
arises in Kitagawa‐Oaxaca‐Blinder decompositions, which define the share of a gap between
groups (e.g., the gap in mean wages amongmen vs.women) “explained” by an observable
(e.g., education) as the reduction in the gap after residualizing the outcome on observables
in a pooled regression.25 An observable may explain a negative component of variation: for
instance, college completion is positively correlatedwithwages, butwomen complete college
at higher rates, so the share of the gender wage gap explained by college is negative (Blau
and Kahn 2017). Intuitively, education suppresses the wage gap—it contributes negatively.

The non‐monotonicity of the CR2 has the same intuition.When no features are observed, the
CR2 is zero, but it may be negative when some features are added.26

4.4. Properties of CR2
lin

The linear CR2 is of applied interest because researchers often use linear models. It has a
simple closed‐form expression.

Proposition 5 (summary statistics expression in linear case). If ℱlin is well‐specified:

CR2
lin(𝑋𝑂) = R2

lin(𝑋𝑂) − ( ̃𝛽𝑃𝑋𝑂 − ̃𝛽𝐶𝑋𝑂)⊤𝜌𝑋𝑂( ̃𝛽𝑃𝑋𝑂 − ̃𝛽𝐶𝑋𝑂),
where ̃𝛽𝑃𝑋𝑂 are the coefficients from an OLS regression of standardized 𝑌 on standardized 𝑋𝑂 in
observational data, ̃𝛽𝐶𝑋𝑂 is the corresponding vector from an OLS regression in an experiment that
randomlyassigns𝑋𝑂 is randomlyassigned inproportion to itsmarginal distribution in the population

24Online Appendix Online Appendix B gives a detailed example.
25The decomposition originated in Kitagawa (1955), Blinder (1973), and Oaxaca (1973).
26Online Appendix E shows there are no othermonotonemeasures of the share of variation causally explained.
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(with the standardization again with respect to the observational mean and variance), and 𝜌𝑋𝑂 the
correlation matrix of observed features in observational data.

Hence, if themodel is well‐specified, theCR2
lin does not requiremicrodata: it can be computed

from standard summary statistics. A researcher who studies a given treatment and wishes
to compare the explanatory power of that treatment to the explanatory power of another
treatment studied in the literature may do so using the reported causal effects of that other
treatment. She does not need the underlying microdata of the other study.

5. Identification, estimation, and inference

We now turn to estimation from finite data.We begin by describing the data available to the
analyst, before discussing identification and estimation, and then turning to inference.

5.1. Data setting

The CR2 is defined using the joint distribution of the outcome and observable features,
and the potential outcome function, which pins down the best causal model. The former
is easy to obtain from observational data, but the latter requires additional information:
the interventional expectation is not identified from observational data without further
assumptions. For simplicity, we consider estimating the interventional expectation through
a randomized experiment, but our method extends to other identification strategies.

The analyst has access to two samples: an observational sample (𝑂) and an experimental
sample (𝐸).27 Following Athey et al. (2025b), we think of the data as a single sample of 𝑁 =𝑁𝑂 + 𝑁𝐸 units, with 𝑁𝑂 units in the observational sample and 𝑁𝐸 units in the experimental
sample. For each unit 𝑖, denote by 𝑆𝑖 ∈ {𝑂, 𝐸} the sample to which 𝑖 belongs.
The observational sample consists of 𝑁𝑂 realizations (𝑌𝑖, 𝑋𝑂𝑖 ) drawn i.i.d from the joint dis‐
tribution of the outcome and observable features, 𝑃𝑌,𝑋𝑂. This sample identifies this joint
distribution, but not the interventional expectation. For the latter, the analyst relies on an
experimental dataset, constructed according to a known experiment (Rubin 1978).

Definition 5. An experiment 𝐸 ≔ (𝑥𝑂𝑡 ,Pr(𝑥𝑂𝑡 ))𝑇𝑡=1 consists of:
(i) 𝑇 treatment arms, where each arm 𝑥𝑂𝑡 ∈ 𝒳𝑂 is an assignment of observed features; and
(ii) an assignment mechanism (Pr(𝑥𝑂𝑡 ))𝑇𝑡=1, where each Pr(𝑥𝑂𝑡 ) ∈ (0, 1) is the probability with

which a unit in the experiment is assigned to treatment arm 𝑥𝑂𝑡 , with∑𝑇𝑡=1 Pr(𝑥𝑂𝑡 ) = 1.
The analyst draws a sample of size𝑁𝐸, independently assigns each unit to a treatment arm via

27This is an example of a “data fusion” setting (Rässler 2012; Bareinboim and Pearl 2016), also called “auxiliary
data” (Hellerstein and Imbens 1999; Chen et al. 2008) “data combination” (Ridder and Moffitt 2007; Pearl and
Bareinboim 2022). Data fusion has been used to generalize causal effects (e.g., Colnet et al. 2024), improve
precision (e.g., Rosenman et al. 2023), estimate causal effects via surrogates (e.g., Athey et al. 2025b), and correct
for biases in observational data (e.g., Kallus et al. 2018; Athey et al. 2025a).
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the assignmentmechanism. She sets the unitʼs observed features according to their treatment
arm, andobserves the resulting outcome.Given treatment𝑥𝑂𝑡 , the outcome𝑌𝑖(𝑥𝑂𝑡 , 𝑋𝑈)depends
on the random variable 𝑋𝑈 and so is random; denote its distribution by 𝑃𝐸𝑌∣𝑥𝑂𝑡 .
Formally, the analyst draws a sample (𝑆𝑖, 𝑋𝑂𝑖 , 𝑌𝑖) of size 𝑁 from a superpopulation in which,
with probability 𝑝 ∈ [0, 1], the unit is drawn from the observational distribution, and with
probability (1−𝑝) from the experimental distribution. For𝑝 = 1, the sample is an observational
sample; for 𝑝 = 0, an experimental sample; for 𝑝 ∈ (0, 1), a combination of observational and
experimental samples. Table 1 summarizes these two sources of data. The last two columns
indicate the advantages and drawbacks of each sample. The observational sample is drawn
directly from the population, and hence its feature distribution match the populationʼs, but
theobserved featuresmaynotbe independent of theunobservables, preventing identification
of the best causalmodel. The experimental sample has the opposite structure: randomization
ensures 𝑋𝑂𝑖 ⟂⟂ 𝑋𝑈𝑖 ∣ 𝑆𝑖 = 𝐸, allowing identification of causal effects, but its feature distribution
generally differs from the populationʼs. Indeed, even its marginal feature distribution will
generally differ: the assignmentmechanism is typically chosen tomaximize precision, not to
match the population distribution (Neyman 1934; Duflo et al. 2007; Athey and Imbens 2017).

Table 1. Summary of observational and experimental samples

Sample 𝑆𝑖 Outcome 𝑌𝑖
observed?

First𝑂
features 𝑋𝑂𝑖
observed?

Other
features 𝑋𝑈𝑖
observed?

Drawn from
pop. dist. 𝑃?

Random
assignment?
(𝑋𝑂𝑖 ⟂⟂ 𝑋𝑈𝑖 )

Obs. sample 𝑂 ✓ ✓ × ✓ ×
Exp. sample 𝐸 ✓ ✓ × × ✓

Note: This table summarizes the observational and experimental samples. The first row describes
the observational sample; the second row describes the experimental sample.

When might this data combination arise? One possibility is that the analyst conducts an
experiment on a given population, and separately draws an observational sample from that
population, e.g., an initial observational study informsa subsequent randomized intervention.
This is common: Epanomeritakis and Viviano (2025) report that over 30% of experimental
papers in AEA journals over the last decade also include observational evidence. A second
possibility is that the experiment includes a “no‐treatment” or “status quo” arm, which may
be treated as observational data. Finally, if causal effects are identified from quasi‐random
variation in observational data, the random variation identifies the causal model, and the
observational data more generally can be used to assess its goodness‐of‐fit.

5.2. Identifying CR2
We now turn to identifying CR2. We say that an experiment is full-rank if (𝑥𝑂𝑡 )𝑇𝑡=1 is full‐rank,
and full-support if every 𝑥𝑂 ∈ supp𝑃𝑋𝑂 appears as some treatment arm 𝑥𝑂𝑡 .
Proposition 6. Fix an outcome 𝑌, a vector of observable features 𝑋𝑂.
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(i) For any ℱ, CR2ℱ(𝑋𝑂) is not identified by an observational sample or an experimental sample.
(ii) The non‐parametric causal R2, CR2(𝑋𝑂), is identified by a combination of observational and

experimental samples if and only if the experiment is full‐support.
(iii) Under a well‐specified linear model, the linear causal R2, CR2

lin(𝑋𝑂), is identified by a combina‐
tion of observational and experimental samples if and only if the experiment is full‐rank.

Part (i) is intuitive given our discussion of the advantages and disadvantages of each sample:
identifying the best causal model requires an experimental dataset; evaluating its goodness‐
of‐fit requires an observational dataset. In consequence, either dataset alone is insufficient.

The analyst can do better with the combined data. Part (ii) says that, with a full‐support
experiment, she can identify the non‐parametric CR2. Intuitively, without any structure on
treatment effects, the analystmustmanipulate over the entire support of 𝑋𝑂. This is plausible
only if the support of 𝑋𝑂 is limited. For instance, with a single, binary observed feature, any
non‐trivial experiment suffices; with several observed features, each with finite support, a
factorial experiment would be required (see, e.g., Mukerjee andWu 2007).

Part (iii) is less stringent, requiring only that the experiment independently manipulates
each feature. If the analyst has prior reason to expect the causal model to be linear, she can
thus identify CR2

lin. On the other hand, if she simply uses linearity as a convenient functional
form, then she can understand CR2

lin as a linear approximation to CR2.
5.3. Estimation and inference

We now construct a plug‐in estimator for the causal R2, when it is identified.

Definition 6. Say the analyst has a combination of observational and experimental samples.
Given an outcome 𝑌, observed features 𝑋𝑂, and function class ℱ, define the plug-in estimator
ĈR

2ℱ(𝑋𝑂) as:
ĈR

2ℱ(𝑋𝑂) ≔ 1 − ℛ̂( ̂𝑌𝐶ℱ,𝑋𝑂)
V̂ar[𝑌] , where ̂𝑌𝐶ℱ,𝑋𝑂 ≔ argmin𝑀∈ℱ

1𝑁𝐸 ∑𝑖∶𝑠𝑖=𝐸(𝑦𝑖 −𝑀(𝑥𝑂𝑖 ))2,
ℛ̂(𝑀) ≔ 1𝑁𝑂 ∑𝑖∶𝑠𝑖=𝑂(𝑦𝑖 −𝑀(𝑥𝑂𝑖 ))2, V̂ar[𝑌] ≔ 1𝑁𝑂 ∑𝑖∶𝑠𝑖=𝑂(𝑦𝑖 − 𝑦𝑂)2, ̄𝑦𝑂 ≔ 1𝑁𝑂 ∑𝑖∶𝑠𝑖=𝑂 𝑦𝑖.

The plug‐in estimator replaces each quantity in the definition of CR2ℱ with its finite‐sample
counterpart.28 Since each component of 𝐶𝑅2ℱ(𝑋𝑂) converges to its population counterpart,
applying Slutskyʼs Theorem shows Proposition 7.

Proposition 7. Suppose the conditions for identification in parts (ii) and (iii) of Proposition 6 are

28When the analystʼs sample is a combinationof observational andexperimental data, eachof these expressions
iswell‐definedwith probability one as the sample grows large. In particular, for 𝑝 ∈ (0, 1)𝑁𝐸 > 0 and𝑁𝑂 > 0with
probability one for𝑁 large, so the fractions arewell‐defined. The argmin is unique in the case of a non‐parametric
model with a full‐support experiment, or a linear model with a full‐rank experiment.
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satisfied. Then the plug‐in estimator is a consistent estimator for CR2ℱ(𝑋𝑂).
Nonetheless, ĈR

2ℱ will generally be downward‐biased in small samples, since estimation
error in the best causal model will tend to inflate the modelʼs risk. In Section 6, we present
several simulations in which this bias vanishes reasonably quickly as the sample size grows.

One can conduct inference for ĈR
2ℱ using the Delta method or the bootstrap. Since inference

proceeds by mostly standard arguments, we sketch the main ideas here, and leave a detailed
discussion to Online Appendix C. The Delta method approach is convenient in the case of
ĈR

2
lin, and begins by writing the plug‐in estimator in terms of other sample quantities:

ĈR
2
lin( ̂𝜃) = 1 − ̂𝜃1̂𝜃2 , for ̂𝜃 = ( ̂𝜃1̂𝜃2) ≔ ( ℛ̂lin

V̂ar[𝑌].)
One can then show that ̂𝜃 is asymptotically normal, derive its asymptotic covariance, and
apply the Delta method to compute the asymptotic variance of ĈR

2
lin.

Outside the linear case, it is more convenient to construct bootstrapped standard errors,
randomly samplingwith replacement fromboth the observational and experimental samples.
For details on this approach and the Delta method, see Online Appendix C.

5.4. Measurement error

In practice, the analyst may measure the features or outcome with error. We now turn to
howmeasurement error affects the CR2. We focus on the linear CR2 in the case of a single
observed feature, and restrict attention to classical measurement error: we say there is
classicalmeasurement error in𝑍 ∈ {𝑋𝑂, 𝑌} if the observed value is𝑍′ = 𝑍+𝜀with 𝜀uncorrelated
with (𝑋𝑂, 𝑌) and 𝔼[𝜀] = 0. There are four cases to consider: whether noise appears in the
outcome or feature; and whether noise appears in the experimental or observational data.29

Proposition 8 (measurement error). Say there is a single observable feature (𝑂 = 1). Denote by
CR2

CME the linear CR2 when there is classical measurement error (CME), and by CR2 the true value.

(i) CME in the outcome in the observational data attenuates the estimated CR2: in particular,
CR2

CME = Var[𝑌]
Var[𝑌]+Var[𝜀] × CR2.

(ii) CME in the feature in the observational data reduces the estimatedCR2:CR2
CME = CR2−𝛽2 Var[𝜀]

Var[𝑌] ,
where 𝛽 is the slope of the true linear interventional expectation.

(iii) CME in the outcome in the experiment does not affect the estimated CR2: CR2
CME = CR2.

(iv) CME in the feature in the experiment can increase or reduce the estimated causal R2, though it
is still bounded above by the R2 in observational data.

29It may be surprising to consider measurement error in the experimentally‐assigned feature. This would
occur, e.g., if treatment status is sometimes recorded incorrectly, or if there is non‐compliance.
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Proposition 8 can be used to sign the likely bias frommeasurement error. The proposition
also motivates correcting CR2 for measurement error, if the analyst is willing to impose
further structure. For instance, suppose the analyst observes two noisy measurements of
each unitʼs outcome, 𝑌 ′𝑖,1 = 𝑌𝑖+𝜖𝑖,1 and 𝑌 ′𝑖,2 = 𝑌𝑖+𝜖𝑖,2, where (𝜖𝑖,1, 𝜖𝑖,2) aremean‐zero noise terms,
independent of one another, the outcome, and the features. In that case, it is well‐known
(Spearman 1904; Griliches 1974) that the “raw predictive R2” (R2

raw) between 𝑌 ′ and 𝑋𝑂 is
attenuated relative to the “signal predictive R2” (R2

signal) between 𝑌 and 𝑋𝑂, and that the the
analyst can recover R2

signal by dividing the observed R2
raw by the reliability 𝑟 ≔ Corr[𝑌 ′𝑖,1, 𝑌 ′𝑖,2].30

Following this logic, in the well‐specified case, we can write CR2
signal = CR2

raw/𝑟, and hence
correct for measurement error in the outcome.31

5.5. Limitations of our data setting

We conclude with two limitations of our data setting. The first concerns external validity.
Our definition of an experiment requires (i) random sampling from the population (“external
validity”) and (ii) random assignment to treatment arms, conditional on inclusion in the
experiment (“internal validity”). Some randomized controlled trials plausibly satisfy both
conditions. However, many experiments satisfy (ii) but not (i). For instance, in a standard
instrumental variables designwith a binary treatment, the instrument randomizes treatment
only among “compliers”, identifying a local average treatment effect (LATE) rather than the
population average treatment effect (ATE) (Imbens and Angrist 1994; Angrist et al. 1996).32

Even in some randomized trials, the experiment is conducted on a subpopulation. Hence,
our baseline setting excludes some situations of practical interest.

Without further assumptions, such an experiment will not generally identify the CR2, even
when combined with observational data. To see why, suppose for example that the feature
of interest has a large causal effect for one subpopulation, but no causal effect for another
subpopulation, and that only variation in the second subpopulation is used in the experiment.
In that case, the true causal CR2 in the general population will differ from zero, whereas the
experiment would suggest that the feature does not explain any variation.

This difficulty in generalizing causal effects from subpopulations is well‐known.When the
experimental subpopulation is itself of interest, the analyst can simply report the share of
variation explained in that subpopulation. Alternatively, she can compare the observable
characteristics of the experimental and target populations to assess external validity. In a ran‐
domized experiment, the experimental subpopulation is observed directly; in instrumental

30This follows from noting that 𝑟 = Var[𝑌]/Var[𝑌 ′], and R2
raw = Var[𝑌′]−𝔼[(𝑌′−𝑌𝑃(𝑋𝑂))2]

Var[𝑌′] = R2
signal

Var[𝑌]
Var[𝑌′] .

31Similarly, in some applications, the outcome is an estimate computed by the analyst with known error—for
example, when explaining variation in neighborhoodsʼ upward mobility or teacher value‐added, which are
estimated with noise (e.g., Kane and Staiger 2008; Chetty et al. 2014; Angrist et al. 2017; Chetty et al., forthcoming).

32Similarly, when assignment is randomized within strata 𝑍, the coefficient on𝑋 in a regression of 𝑌 on𝑋 and𝑍 identifies a variance‐weighted average of stratum‐specific ATEs, with weights proportional to Var(𝑋 ∣ 𝑍) (see,
e.g., Angrist 1998).
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variables designs, Abadieʼs (2003) weighting theorem identifies the distribution of complier
covariates. If these distributions are similar, the analyst may have more confidence in gen‐
eralizing her effects; if they differ, the analyst can compute covariate‐specific LATEs and
reweight them to recover the population ATE, under the assumption that effect heterogeneity
is fully captured by observables (Angrist and Fernández‐Val 2013; Hartman et al. 2015). Fi‐
nally, structural approaches based on parametric latent‐index models can extrapolate causal
effects beyond compliers (see, e.g., Heckman et al. 2001, 2003; Angrist 2004; Heckman 2010).
Our main contribution is to show the usefulness of CR2 for an externally‐valid experiment,
although these approaches can extend our method to other settings.

A second limitation that we have assumed features are either (i) “observable” in the sense
that they are observed in the observational dataset and manipulated in the experiment,
or (ii) neither observed nor manipulated. In practice, there is a third class, which we call
“covariates”: features which are observed, but not manipulated—either because the features
are inherently difficult to manipulate (e.g., they involve sex or race) or because they are not
the main focus of the experiment. In the main text, we consider the simple case without
covariates, but we showhow they can be incorporated into the analysis in Online Appendix D.

6. Simulations

We now present several simulations.We have two goals in doing so: first, to gain familiarity
with the measure by displaying it in some simple settings; and, second, to examine the
performance of the plug‐in estimator.

Simulation 1: independent features in a well‐specified linear model. We begin with the
simplest non‐trivial setting, in which the potential outcome function is linear and the feature
variables are independent of one another. Say there are two features, only one of which is
observed (𝐾 = 2,𝑂 = 1), with true data‐generating process:

𝑌(𝑋1, 𝑋2) = 𝛽1𝑋1 + 𝑋2(3)

(𝑋1𝑋2) ∼ 𝒩(ǁ, Σ), Σ = (1 00 1) ,(4)

where (3) is the (linear) potential outcome function, and (4) is the joint distribution of (𝑋1, 𝑋2),
which jointly pin down the distribution of 𝑌. Our simulation varies the causal effect of the
observed feature (𝛽1).
Our results are summarized in Panel A of Figure 2.We begin by examining the true CR2(𝑋1),
illustrated by the purple line. Since the data‐generating process is linear, this coincides with
CR2

lin(𝑋1). Moreover, since the observed and unobserved features are independent, this also
coincides with the standard (predictive) R2. When 𝑋1 has no effect on the outcome (𝛽1 = 0),
the causal R2 is equal to 0; as the causal effect increases (in magnitude), the share of variance
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explained grows.When 𝑋1 has the same causal effect in magnitude as the unobserved feature
(|𝛽1 = 1), 𝑋1 explains half of the total variance in the outcome, and so CR2(𝑋1) = 1/2. As the
causal effect of 𝑋1 grows, the share of variation it explains approaches 1.
To examine the plug‐in estimatorʼs performance, we specify several additional parameters.
We imagine the analyst collects a sample of size 𝑁, of which three‐fifths of units are in the
observational sample, and the remaining two‐fifths in the experimental sample (𝑝 = 0.6).
The experiment consists of two equally‐probable treatment arms, one assigning units to a
treatment value of 𝑋1 = 0, and the other to 𝑋1 = 1. The navy dots show the performance of
the estimator when the full sample size is 𝑁 = 200; we perform 1, 000 simulations and present
the mean estimate. The estimator displays a downward bias which falls fairly quickly as the
number of units increases, as the light blue (𝑁 = 500) and orange (𝑁 = 2, 000) series show.
Simulation 2: correlated features in awell‐specified linearmodel. For our second simulation,
we maintain the linear model, but allow the features to be correlated. As before, there are
two features, one of which is observed, with true data‐generating process:

𝑌(𝑋1, 𝑋2) = 𝑋2(5)

(𝑋1𝑋2) ∼ 𝒩(ǁ, Σ), Σ = (1 𝜌𝜌 1) ,(6)

where (5) is the (linear) potential outcome function, and (6) is the joint distribution of (𝑋1, 𝑋2).
Relative to the first simulation, we fix the first feature to have no causal effect (𝛽1 = 0), but
vary the correlation between features (𝜌).
Panel B summarizes our results. As before, we begin by showing the true CR2(𝑋1) (which
again coincides with CR2

lin(𝑋1)). The CR2 is always equal to zero, since 𝑋1 does not have any
effect on 𝑌, and so causally explains none of the variation. By contrast, the predictive R2 is
strictly positive when 𝜌 ≠ 0: 𝑋1 does have some predictive power due to its correlation with𝑋2. We use the same parameters as in the previous simulation to assess the performance of
our plug‐in estimator. As before, the plug‐in estimator shows a finite‐sample downward bias
that vanishes reasonably quickly in the number of observations.

Simulation 3: correlated features in a misspecifiedmodel. Finally, we introduce misspecifi‐
cation. As before, there are two features, one of which is observed; but now we introduce a
non‐linearity into the true potential outcome function:

𝑌(𝑋1, 𝑋2) = 0.2𝑋1 + 𝛾𝑋21 + 𝑋2(7)

(𝑋1𝑋2) ∼ 𝒩(𝜇, Σ), 𝜇 = (50) , Σ = ( 1 0.50.5 1 ) .(8)

As part of the simulation, we vary the value of the quadratic term in the effect of 𝑋1 on 𝑌 (𝛾).
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The purple line in Panel C shows the trueCR2(𝑋1). Since the true potential outcome function is
quadratic, this coincides with CR2

quad(𝑋1), where quad denotes the class of quadratic models
(𝑥1 → 𝜇 + 𝜈𝑥1 + 𝜋𝑥21). As the quadratic term (𝛾) increases, the true share of variation in 𝑌
explained by 𝑋1 also increases, and approaches 1 for large values of 𝛾.

Figure 2. Results of simulations

(A) Results of simulation 1
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(B) Results of simulation 2
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(C) Results of simulation 3: experiment (a)
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(D) Results of simulation 3: experiment (b)
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Note: This figure presents results from our simulations. The purple line in Panel (A) displays the
true CR2 in simulation 1; since the data generating processing is linear, this coincides with CR2

lin.
The navy dots show the mean estimated CR2 among 2,000 simulations, when the sample size is 200.
The light blue and orange dots replicate the navy dots, for sample sizes of 500 and 2,000, respectively.
Panel (B) replicates Panel (A) for Simulation 2. Panel (C) replicates Panel (A) for the first experiment
in Simulation 3, and Panel (D) for the second experiment.

We then turn to estimating CR2(𝑋1) using a combination of observational and experimental
data.We consider two experiments; in both cases, to allow for the possibility of estimating a
quadratic model, the experiments have three treatment arms. In experiment (a) (Panel C), we
suppose the experimental sample is evenly divided between being assigned the mean value
of 𝑋1, or one standard deviation above or below. The solid circles in Panel C display the mean
estimates if the analyst specifies a quadratic model; as before, there is a small, downward
finite‐sample bias that vanishes reasonably quickly as the number of observations grows.

Now suppose the analyst estimates amisspecified linearmodel (the hollow circles in Panel C).
In this case, the plug‐in estimator may not converge to the true CR2. In practice, the degree of
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divergence in Panel C is reasonably small. Intuitively, although the true model is quadratic, a
linear analysis of the experiment around the mean value of 𝑋1 recovers an average treatment
effect that approximates the true quadratic effect.

In Panel D, we consider an alternative experimental design inwhich the experimental sample
is evenly divided between being two, three, or four standard deviations above the mean
value of 𝑋1. As before, the estimates produced from the quadratic model (in solid circles)
converge to the true CR2. In this case, however, the estimates produced from the linearmodel
(in hollow circles) are quite different from the true CR2. This is because the linear model
estimates a local average treatment effect among the treatment arms in the experiment; as a
result, the fit of the causalmodel estimated from the experiment is worse when the treatment
arms are further away from the mass of the distribution of the observables.

We draw three conclusions from the simulations. First, in each case, the CR2 captures an
intuitive notion of the share of variation explained. Second, the downward bias of 𝐶𝑅2ℱ
vanishesquickly.Third,misspecification cancause𝐶𝑅2ℱ not to converge to thenon‐parametric𝐶𝑅2, though the degree of difference seems reasonably small at least in the simulations.

7. Applications of the CR2
We illustrate our measure in five settings, summarized in Table 2. We choose the settings
both for substantive interest, and to show extensions to the baseline data setting in section 5.

Table 2. Summary of applications

Population Outcome (𝑌) Observed cause of
interest (𝑋𝑂) Extensions relative to baseline

data setting
1. Springs in Western Kenya

(Kremer et al., 2011)
E Coli level Spring protection –

2. Elementary school students
in Tennessee (STAR)

Test scores Class size IV design to estimate causal ef‐
fect

3. Former colonies (Acemoglu
et al., 2001)

GDP per capita Expropriation risk IV design to estimate causal ef‐
fect; no separation between ex‐
perimental and observational
samples

4. U.S. cities (Fluegge, 2025) City population Exposure to in‐
fluenza

IV design to estimate causal ef‐
fect; no separation between ex‐
perimental and observational
sample

5. Adults in the U.S. and U.K.
(DASH, NDNS)

Blood pressure Sodium intake Experimental and observational
samples drawn from different
populations

Note: This table summarizes the five applications described in this section.
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7.1. Application1: Shareof variation in springwaterquality explainedbyspringprotection

We begin with an application that closely resembles our baseline data setting. Kremer et
al. (2011) conduct a randomized controlled trial evaluating the effects of spring protection
on water quality. The study takes place in the rural Busia and Butere‐Mumias districts of
KenyaʼsWestern Province. The authors define “spring protection” as “seal[ing] off the source
of a naturally occurring spring and encas[ing] it in concrete so that water flows out from a
pipe rather than seeping from the ground” (p. 149). The primary measure of water quality is
the E. coli level. We ask what share of variation in water quality across springs is causally
explained by variation in spring protection.

The experimental sample consists of springs involved in the authorsʼ experiment. The ob‐
servational sample consists of nearby springs that were not involved in the experiment.33

Protection status is binary.We assess the predictive relationship between water quality and
spring protection through an OLS regression in the observational data of the form

lnE Coli𝑠 = 𝛼𝑃 + 𝛽𝑃Protection𝑠 + 𝜖𝑃𝑠(9)

where lnE Coli𝑠 is the natural logarithm of the E. coli level in spring 𝑠, and Protection𝑠 is an
indicator for spring 𝑠 being protected. The estimated coefficients (𝛼̂𝑃, ̂𝛽𝑃) define our best pre‐
dictive model, ˆlnE Coli𝑠𝑃(Protection) = 𝛼̂𝑃 + ̂𝛽𝑃Protection.We assess the causal relationship
through a corresponding OLS regression in the experimental data:

lnE Coli𝑠 = 𝛼𝐶 + 𝛽𝐶Protection𝑠 + 𝜖𝐶𝑠 .(10)

The estimated coefficients (𝛼̂𝐶, ̂𝛽𝐶) define our best causal model, ˆlnE Coli𝑠𝐶(Protection) =𝛼̂𝐶 + ̂𝛽𝐶Protection𝑠. Panel (A) of Table 2 presents the estimated values (𝛼̂𝑃, ̂𝛽𝑃) and (𝛼̂𝐶, ̂𝛽𝐶),
which are reasonably similar; indeed, we cannot reject at the 95% level that ̂𝛽𝐶 = ̂𝛽𝑃.
We then assess the goodness‐of‐fit of the best predictive and causal models (Panels (B)‐(C)).
The best predictive model reduces mean squared error by around one‐sixth. The best causal
model reduces mean squared error by only a marginally smaller amount. In consequence
the predictive and causal R2 are very similar, as the first two bars in Panel A of Figure 3 show.

Kremer et al. (2011) note that there is substantial error in measuring the E. coli level. Proposi‐
tion 8 suggests that this measurement error in the outcome (in both the observational and
experimental samples) will tend to attenuate the true share of variation explained. Under the
assumption that this measurement error is independent of both spring protection and the
true water quality, we can correct for this attenuation by dividing the raw share of variance
explained by the test‐retest reliability of E. coli measurements, which Kremer et al. (2011)
estimate to be 0.46. The third and fourth bars in Figure 3(A) display this signal CR2, suggesting

33In Appendix Table 1, we show that the observational and experimental samples are similar on pre‐treatment
characteristics.
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that variation in spring protection explains around a third of variation in water quality, in
both causal and predictive senses.

Table 3. Share of variance in E Coli causally explained by variance in spring protection

Obs. data
(1)

Exp. data
(2)

A. Best predictive and causal models
Const. 4.82 3.64

(0.144) (0.089)
Spring protection ‐1.98 ‐1.47

(0.273) (0.158)

B. Outcome variance andmean squared error
Var[ln E Coli] 4.88 4.46
MSE[Best predictive model for ln E Coli] 4.08 –
MSE[Best causal model for ln E Coli] 4.13 3.98

C. Share of variance explained
% of var. predictively exp. in pop. (obs. R2) 16.42% –
% of var. causally exp. in exp. (exp. R2) – 10.71%
% of var. causally exp. in pop. (CR2) 15.38% –

D. Hypothesis tests
CR2 = 0 0.000

Note: This table presents our analysis of the share of variation in water quality (as measured by E.
Coli level) causally explained by spring protection. Panel (A) presents estimates of equations (9)
and (10), with corresponding standard errors. Panel (B) presents the mean squared error of the
models estimated in (A). Panel (C) presents the share of variance explained.

7.2. Application 2: Share of variation in test scores explained by class sizes

Our second application draws on the Tennessee Student‐Teacher Achievement Ratio Experi‐
ment (“Project STAR”), which randomly assigned over 10,000 elementary school students
to classes of different size. A rich literature has used STAR data to estimate causal effects of
class size on test scores and later‐life outcomes (Krueger 1999; Chetty et al. 2011; Dynarski
et al. 2013). We ask what share of variation in test scores is causally explained by class size.

Our experimental sample consists of STAR data made publicly available by Achilles et
al. (2008). The data include information on school IDs, studentsʼ class sizes in grades K–
3, and math and reading test scores in grades 1–3. For ease of interpretation, we express
scores in each grade in percentage terms, and then compute mean scores over grades 1–3,
restricting the sample to students observed in each grade. Following previous literature, we
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assess the causal effect of class size in a two‐stage least‐squares regression of the form:

ClassSize𝑖 = 𝜋𝐶 + 𝜌𝐶Small𝑖 + 𝜈𝐶𝑖 ,(11)

Score𝑖,𝑠 = 𝛼𝐶𝑠 + 𝛽𝐶𝑠 ˆClassSize𝑖 + 𝜀𝐶𝑖,𝑠,(12)

where Score𝑖,𝑠 is student 𝑖ʼs score in subject 𝑠 (reading or math), ClassSize𝑖 is her class size,
and Small𝑖 is an indicator for being assigned to a small class. The coefficients from the
second‐stage regression, (𝛼̂𝐶𝑠 , ̂𝛽𝐶𝑠 ), define our estimated best causal model for test scores:

Ŝcore
𝐶(ClassSize) = 𝛼̂𝐶𝑠 + ̂𝛽𝐶𝑠 ClassSize.(13)

Achilles et al. (2008) also publish an observational sample, consisting of students inTennessee
schools that were matched to STAR schools, but did not participate in the experiment.We
treat these schools as our observational sample.We assess the predictive relation between
studentsʼ test scores and class size using the regression:

Score𝑖,𝑠 = 𝛼𝑃𝑠 + 𝛽𝑃𝑠 ClassSize𝑖 + 𝜖𝑃𝑖,𝑠.(14)

The resulting coefficients, (𝛼̂𝑃𝑠 , ̂𝛽𝑃𝑠 ), define our best predictive model:

Ŝcore
𝑃𝑠 (ClassSize) = 𝛼̂𝑃𝑠 + ̂𝛽𝑃𝑠 ClassSize.(15)

Finally, we assess the goodness‐of‐fit of the best predictive and causal models. Panel B of
Figure 3 shows that around 8% (5%) of variation in reading (math) scores is predicted by
variation in class size, whereas only about 3% (2%) of variation is explained in a causal
sense. The causal and predictive R2 differ due to the difference in the experimental and
observational regression coefficients, i.e., omitted variable bias.

The estimates of goodness‐of‐fit are reasonably precise, which reflects the large number of
students in both observational and experimental samples. For both reading andmath scores,
we reject that the predictive and causal R2 are equal (𝑝 < 0.001 in both cases). In the case of
math scores, we cannot reject at the 95% level that the CR2 is equal to zero; that is, that class
size causally explains none of the variation in test scores.

7.3. Application 3: Share of variation in national income explained by institutions

Our next application studies the determinants of national income. Acemoglu et al. (2001)
examine the effects of differences in institutions between countries on differences in national
income.34 The authorsʼ mainmeasure of institutional quality is an index of expropriation risk.

34Indeed, the authors explicitly describe their purpose as being about understanding the sources of naturally‐
occurring variation in incomes, rather than seeking to inform policy: the articleʼs opening sentence asks, “What
are the fundamental causes of the large differences in income per capita across countries?”
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Instrumenting for expropriation risk using variation in the mortality rates of early European
settlers, the authors show that expropriation has large effects on GDP per capita.35

We build on this analysis by asking what share of variation in national income is causally
explained by differences in expropriation risk.We begin by estimating our best causal model.
ReplicatingAcemoglu et al. (2001),we assess the causal effect of expropriation risk onnational
incomes in a two‐stage least‐squares regression of the form:

ExpropriationRisk𝑐 = 𝜋𝐶 + 𝜌𝐶SettlerMortality𝑐 + 𝜈𝐶𝑐 ,(16)

GDP𝑐 = 𝛼𝐶 + 𝛽𝐶 ˆExpropriationRisk𝑐 + 𝜀𝐶𝑐 ,(17)

whereExpropriationRisk𝑐 is themeasuredexpropriation risk index for country 𝑐, SettlerMortality𝑐
is the rate of early European settler mortality in 𝑐, and GDP𝑐 is GDP per capita in 𝑐. The coeffi‐
cients from the second‐stage regression, (𝛼𝐶, 𝛽𝐶) define our estimated best causal model:

ĜDP
𝐶(ExpropriationRisk) = 𝛼𝐶 + 𝛽𝐶ExpropriationRisk.

We then evaluate the modelʼs goodness‐of‐fit. Panel C of Figure 3 shows a scatterplot of
countriesʼ log GDP per capita vs. their average expropriation risk. The navy line shows the
best causal model. Computing the mean squared error from the best causal model gives
a causal R2 of 0.19: that is, the results in Acemoglu et al. (2001) suggest that around one‐
fifth of variation in national income is causally explained by differences in institutionsʼ
expropriation risk between countries.36 Note that this best causal model differs from the line
of best fit: the R2 from a regression of log GDP per capita on expropriation risk is around 0.54.
As a consequence of the small sample size, the estimated causal R2 is very noisy: even at the
10% level, we cannot reject that expropriation risk explains none of the variation in income.

7.4. Application 4: Share of variation in city growth explained by rainfall during the 1918
influenza pandemic

Our next application studies the determinants of city growth. Fluegge (2025) examines the
long‐run effects of the 1918 influenza pandemic on the population of American cities. Using
a rainfall instrument for influenza exposure, Fluegge (2025) finds that the pandemic had
effects on city population and GDP that persist until the present day.37

We build on this analysis by examining the share of variation in city growth that is explained

35This instrument has been controversial (McArthur and Sachs 2001; Glaeser et al. 2004; Albouy 2012; Conley
and Kelly 2025). We take the instrument as given and examine only its implications for the share of variance in
national incomes that is causally explained by expropriation risk.

36As Acemoglu et al. (2001) note, this only reflects one aspect of differences between institutions: “. In reality
the set of institutions that matter for economic performance is very complex, and any single measure is bound
to capture only part of the ”true institutions”” (pp. 1385–1386).

37The idea behind the instrument is that rain drives people indoors, where the flu spreads more easily.

25



by differential exposure to rainfall in the early days of the influenza pandemic.38 We begin by
estimating our best causal model. Fluegge (2025) argues that rainfall in the early days of the
pandemic is randomly assigned, conditional on rainfall in the corresponding calendar days
over the period 1910‐1927. For that reason, for each year 𝑦 ∈ {1920, 1930,… , 2010}we estimate
the causal effect of rainfall in an OLS regression of the form:39

ΔPop𝑐,𝑦 = 𝛼𝐶𝑦 + 𝛽𝐶𝑦 RainDays𝑐 + 𝜆′𝑦𝑋𝑐 + 𝜖𝑐,𝑦,
where ΔPop𝑐, 𝑦 is the change in city 𝑐ʼs log population between 1910 and year 𝑦, RainDays𝑐 is
the number of days with at least 0.01 inches of rainfall over the first 30 days after the first
recorded influenza case in city 𝑐, and 𝑋𝑐 is a vector of pre‐treatment controls, including the
mean number of rainy days in the corresponding calendar days over the period 1910‐1927.40

We estimate the model on a sample of 43 large American cities described in Fluegge (2025).41

The coefficients from this regression define our estimated best causal model:

Δ̂Pop𝐶𝑐,𝑦 = 𝛼̂𝐶𝑦 + ̂𝛽𝐶𝑦 RainDays𝑐.
We then evaluate the modelʼs goodness‐of‐fit (Panel D). Our point estimate suggests almost
20% of city growth between 1910 and 2010 is causally explained by rainfall exposure in the
early days of the influenza pandemic. The estimated share has been roughly constant in
recent decades.42 We conclude that the point estimate suggests that a large share of city
growth can be explained by the historical fact of rainfall in the early days of the pandemic.

The graph also shows bootstrapped standard errors. Of course, given the small sample size,
there is considerable uncertainty around this point estimate. This is unsurprising, given that
the causal effect of rainfall itself is estimated reasonably imprecisely in Fluegge (2025).43

38In the case of an instrumental variables analysis, one natural “causal model” relates the instrument to the
outcome using the “reduced form” relation between the instrument and outcome; another relates the endogenous
regressor to the outcome, using a two‐state least‐squares regression to estimate the effect of the regressor on the
outcome.We take the former route in this section, and the latter route in the preceding section.

39Fluegge (2025) studies the population level, controlling for the 1910 population.We use the change vs. 1910.
40Following Fluegge (2025), 𝑋𝑐 consists of city population characteristics in 1910 (share white, share urban,

share of white residents who are foreign‐born, share age 6‐20, share age 6‐20 in school), long‐term weather
characteristics (mean precipitation days in September and October in the period 1910–1927, mean January
temperature in the period 1900–1940), in addition to the mean number of days of rainfall in the calendar days
over the period 1910–1927 that correspond to the first 30 days after the first recorded case of influenza in the city.

41Fluegge (2025) also analyzes a larger county‐level dataset, where some car needs to be taken due to missing
data problems. For simplicity, we restrict attention to the smaller city‐level dataset.

42A natural placebo test is to evaluate what share of city growth between 1900 and 1910 is causally explained
by rainfall; when performing that test, we find that only about 2% of city growth over that period is explained by
rainfall, and we cannot reject that 0% of city growth is explained by rainfall.

43In light of our Proposition 1, if the 95% confidence interval for the estimated effect of the observed feature
includes 0, then the 95% confidence interval for the CR2 associated with this feature must also include 0. Since
the causal effects of rainfall on city growth are marginally significant at the 95% level, it follows that the CR2 can
be no more than marginally significant at the 95% level.
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7.5. Application 5: Share of variation in hypertension explained by sodium intake

Finally, we consider the causal R2 in a stylised health setting.High blood pressure is a major
cause of death in high‐income countries through cardiovascular disease such as heart attacks
and strokes. Excess salt consumption is considered a leading cause of high blood pressure
(Institute of Medicine 2010). We investigate what share of variation in blood pressure is
causally explained by salt consumption, and how its explanatory power differs by gender.

First, we collect data on the causal effect of salt on blood pressure from the DASH‐Sodium
experiment (Sacks et al. 2001), a randomized controlled trial which evaluated, separately, the
effects of salt intake and a healthy eating plan (“DASH” diet) on blood pressure. The study
recruited 412 US participants with normal, high‐normal, or high blood pressure.44 These
people were randomised into a control group and six treatment groups. Each treatment was
a combination of 1) a typical US diet vs. a healthy diet and 2) low, intermediate, or high salt
levels (50, 100, and 150 mmol sodium per day respectively). Study staff prepared the food,
and participants received all their meals and snacks at an outpatient clinic. After a two‐week
run‐in period during which everyone ate a high‐sodium control diet, participants followed
their assigned treatment diet for 30 days. At the end of the month, researchers measured
participantsʼ blood pressure, which is the main outcome of the study.

In a typical U.S. diet, lowering salt from a high to low level reduces systolic blood pressure by
6.7mmHg (Figure 1A in Sacks et al. 2001). The effect differs by gender: a 5.6mmHg reduction
among men vs. a 7.4mmHg reduction among women (Figure 2A ibid.).45

To assess how well salt intake explains high blood pressure, we combine the causal effects
with observational data from the UK National Diet and Nutrition Survey (University Of
Cambridge, MRC Epidemiology Unit and NatCen Social Research 2021).46 This long‐running,
nationally‐representative study assesses the diets and nutritional status of people in the UK,
including blood pressure measurements. In years 2008–2012, the study also collected data
on urinary sodium, which approximates sodium intake well.47 We follow a public health
literature on sodium intake and blood pressure which essentially treats the U.S. and UK
populations as transportable (Jones et al. 2020).

44The study required participants to have a diastolic blood pressure of 80–95 mm Hg and a systolic blood
pressure of 120–160 mmHg.

45Other studies have also reported a stronger blood pressure response to salt in women vs.men: e.g., J. He
et al. (2009); Bailey and Dhaun (2024); and the meta‐analyses of F. J. He et al. (2013) and Huang et al. (2020).

46The data are available via the UK Data Service under study number 6533.
47Measuring sodium in urine collected over 24 hours, as done here, is themost accuratemethod to estimate salt

intake (World Health Organization 2021) as about 93% of sodium is excreted through urine (Campbell et al. 2023).
Other studies measuring salt consumption often rely on recall: they ask participants what foods they ate and
estimate their sodium content. Those methods are substantially noisier (McLean et al. 2018).
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Figure 3. Causal R2 in Applications

(A) Share of variance in water quality
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Note: This figure summarizes the results in our five applications. Panel (A) shows the variance
in water quality in Kenyan springs causally explained by spring protection. The set of bars on the
right show the R2 and CR2 corrected for measurement error. Panel (B) shows the share of variance
in test scores causally explained by class size. The navy bars show the share of variance in test scores
predicted by class size (the standard predictive R2), and the turquoise bars show the corresponding
causal R2. Panel (C) shows the share of variance in national income causally explained by institu‐
tions (expropriation risk). Panel (D) shows the share of variance in city population growth causally
explained by variation in rainfall during the early days of the 1918 influenza pandemic. Panel (E)
shows the share of variance in systolic blood pressure (mmHg) causally explained by salt intake
(100 mmol Na), as well as the causal effect of salt intake on blood pressure. The navy bars show
the estimated causal effects of salt intake on blood pressure, in total, and separately for men and
women. The turquoise bars show the share of variance causally explained by salt intake. Panels (A),
(B), (D), and (E) show bootstrapped 95% confidence intervals.
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Salt consumption causally explains 5.1% of the variation in systolic blood pressure, and 6.8%
of that variation in men. However, it explains substantially less in women: 0.6% (𝑝‐value
for difference < 0.01). It may be surprising that the drop in explanatory power is higher
in women than in men since the effect of sodium on blood pressure is similar, if anything
somewhat larger, for women. That is because there is more omitted variable bias among
women. One might have thought that once one takes into account the higher salt sensitivity
among women, sodium causally explains a similar share of variation among men vs.women.
However, the causal R2 tells us that that reasoning is incorrect. In fact, salt explains blood
pressure explains less among women than among men.

8. Conclusion

We argue that social scientists are interested not just in the causal effect of a given feature,
but in howmuch of the population variance in the outcome is explained by that feature—a
question left unanswered by causal effects alone as well as by traditional goodness‐of‐fit
measures. We recast this question as the goodness‐of‐fit of the causal model generated by an
experiment. The natural measure of goodness‐of‐fit—the “causal R2”—has a share of variance
explained interpretation that is analogous to the predictive R2. The CR2 is identified by a
combination of experimental and observational data, and has a simple, consistent plug‐
in estimator. We illustrate the usefulness of the measure in applications to development,
institutions, urban economics, education, and health.

We conclude with three limitations of our approach. First, a line of literature in statistics
criticizes the usefulness of the predictive R2.48 Part of this criticism (e.g., King 1986, 1991)
argues that the R2 is incorrectly interpreted causally; our alternative measure, CR2, can be
seen as a response to this criticism. There are other lines of criticism which are not resolved
by our measure.49 Nonetheless, since R2 remains the primary way to assess the share of
variation explained, we consider it valuable to address one deficiency. Moreover, if one
accepts our claim that the share of variation explained can be recast as the goodness‐of‐fit of
a causal model, then it is natural to develop alternative measures of causal goodness‐of‐fit.

Second, the relevant causal model may depend on the appropriate “distance” from the
outcome. For instance, return to our motivating example of class size. Suppose the class size
is a deterministic (decreasing) function of the local governmentʼs education budget. If the
analyst studies the effect of class size on test scores, she will find the same share of variation
in test scores is explained by class size, or by the size of the education budget. As such, even
a causal R2 of 1 does not rule out that there are other causal models that also fully explain the
outcome. Nonetheless, the usefulness of the two models will depend on the analystʼs goal.50

48For examples, see Draper (1984), Healy (1984), Kvålseth (1985), King (1986, 1991), and Scott andWild (1991).
49For instance, Draper (1984) objects to the specific use of R2 as a measure of proportional goodness‐of‐fit;

Healy (1984) objects to the usage of proportional measures more broadly.
50Luskin (1991, p. 1038) makes this point well: “A given 𝑦 can always be explained in a number of equally valid

ways—in terms of a larger set of conceptually finer 𝑥ʼs or a smaller set of conceptually grosser ones, in terms of
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Finally, goodness‐of‐fit is only one desirable property of a causal model: we may also value
parsimony, interpretability, robustness, or portability (Fudenberg et al. 2022). Nonetheless,
the extent to which a model causally explains variation speaks to our understanding of the
outcome, and to the value of future research.
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Appendix

Structure. The main appendices prove statements in the main text. The online appendices
provide some additional results and examples.

Notation.We use the operators 𝔼 and Var to refer to the expectation and variance in the true
population, rather than in the hypothetical population from which the experiment is drawn.

A. Proofs for Section 4

Proof of Proposition ǉ. For (i), since the observable features have no effect on the outcome,
the interventional expectation 𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂] = 𝔼[𝑌], and hence CR2(𝑋𝑂) = 0. Since ℱ
includes all constant models, ℱ is well‐specified, so CR2ℱ(𝑋𝑂) = CR2(𝑋𝑂) = 0. For (ii), since 𝑋𝑂
fully determines 𝑌, 𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂] = 𝑌(𝑥𝑂, 𝑋𝑈), for all 𝑋𝑈, which implies CR2(𝑋𝑂) = 1. Sinceℱ is well‐specified, CR2ℱ(𝑋𝑂) = CR2(𝑋𝑂) = 1.
For (iii),CR2ℱ(𝑋𝑂) ≤ 1, with equality only if 𝔼[(𝑌 − 𝑌𝐶ℱ,𝑋𝑂(𝑥𝑂))2] = 0, which requires𝑌(𝑥𝑂, 𝑥𝑈) =𝑌𝐶ℱ,𝑋𝑂(𝑥𝑂) almost surely. This is immediately contradicted by 𝔼[Var[𝑌] ∣∣ 𝑋𝑂 = 𝑥𝑂] > 0. For
(iv), note that when there is no variance in observables, then 𝑋𝑂 is constant in the population.
Denote the constant value of 𝑋𝑂 by 𝑎. 𝑌𝐶ℱ,𝑋𝑂(𝑎) = 𝔼[𝑌] since conditioning any realization by
intervention to 𝑋𝑂 = 𝑎 does not change its outcome 𝑌 as it was already assigned 𝑋𝑂 = 𝑎.
As a result, the expectation will also equal 𝔼[𝑌]. For (v), note that if there is no variance in
unobservable features 𝑌 = 𝔼[𝑌𝑋𝑂(𝑥𝑂)] = 𝑌𝐶𝑋𝑂(𝑥𝑂) = 𝑌𝐶ℱ,𝑋𝑂(𝑥𝑂). The first equality says that
when unobservables do not vary, then the outcome 𝑌 is equal to the expected potential
outcome function that only depends on observables. The second equality is the definition of
the best causal model. The third equality follows because ℱ is well‐specified. As a result, the
risk of the best causal model under ℱ is zero and the causal R2 equals 1.
For (vi), since 𝜀 is causally unaffected by 𝑋𝑂, and is mean‐zero, the injection of 𝜀 does not
affect the best causal model. Denote this best causal model by𝑀𝐶. Then:

∣ 𝐶𝑅2ℱ(𝑌 ′ → 𝑋𝑂) ∣ =∣ Var[𝑌 ′] − 𝔼[(𝑌 ′ −𝑀𝐶(𝑋𝑂))2]
Var[𝑌 ′] ∣

=∣ 1 − 𝔼[(𝑌 −𝑀𝐶(𝑋𝑂))2] + Var[𝜀]
Var[𝑌] + Var[𝜀] ∣

≤∣ 1 − 𝔼[(𝑌 −𝑀𝐶(𝑋𝑂))2]
Var[𝑌] ∣= ∣ 𝐶𝑅2ℱ(𝑌 → 𝑋𝑂) ∣ .

For (vii), an example suffices: the true data‐generating process for (𝑌𝑖, 𝑋𝑖) is 𝑌𝑖(𝑋𝑖) = 𝑋𝑖, 𝑋𝑖 ∼𝒩(0, 1). Consider an analyst studying the determinants of 𝑌𝑖, who observes 𝑋𝑖. The best causal
model is 𝔼[𝑌𝑖 ∣∣ 𝑋𝑖 = 𝑥𝑖] = 𝑥𝑖, with CR2(𝑌 → 𝑋) = 1. For an analyst studying the determinants
of 𝑋𝑖, who observes 𝑌𝑖, the best causal model is 𝔼[𝑋𝑖 ∣∣ 𝑌𝑖 = 𝑦𝑖] = 0, so CR2(𝑋 → 𝑌) = 0.
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Proof of Proposition Ǌ. For (i), since 𝑔𝑌 is affine and strictly monotone, write 𝑔𝑌(𝑌) = 𝛼 + 𝛽𝑌,
for 𝛽 > 0. The interventional expectation for 𝑌 ′ is

𝔼[𝑌 ′ ∣∣ 𝑋𝑂′ = 𝑥𝑂′] = 𝛼 + 𝛽𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑔−1(𝑥𝑂′)]= 𝛼 + 𝛽𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂]
where the first line defines 𝑔−1 as the element‐wise inverse of (𝑔𝑘)𝑂𝑘=1, which is well‐defined
by virtue of each (𝑔𝑘) being strictly monotone. Then

CR2(𝑌 ′ → 𝑋𝑂′) = 1 − 𝔼[(𝑌 ′ − 𝛼 − 𝛽𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂])2]𝛽2Var[𝑌]
= 1 − 𝔼[(𝛼 + 𝛽𝑌 − 𝛼 − 𝛽𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂])2]𝛽2Var[𝑌]
= 1 − 𝛽2 𝔼[(𝑌 − 𝔼[𝑌 ∣∣ 𝑋𝑂 = 𝑥𝑂])2]𝛽2Var[𝑌] = CR2(𝑌 → 𝑋𝑂).

Part (ii) follows similar steps, additionally making use of the fact 𝑔−1 is affine.

Proof of Proposition ǋ. For (i), fixing the function class ℱ, distribution of features 𝑃𝑋, and
potential outcomes function 𝑌(⋅), the best predictive model 𝑌𝑃ℱ,𝑋𝑂 minimizes ℛ(⋅) among
all models in ℱ, and hence maximizes 𝐺(⋅) among all models in ℱ, so R2(𝑋𝑂) = 𝐺(𝑌𝑃ℱ,𝑋𝑂) ≥
CR2(𝑋𝑂) = 𝐺(𝑌𝐶ℱ,𝑋𝑂). For (ii):

𝑌𝐶ℱ,𝑋𝑂 = argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌)2 ∣∣ 𝑋𝑂 = 𝑥𝑂]]
= argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌(𝑥𝑂, 𝑋𝑈))2]]
= argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌(𝑥𝑂, 𝑋𝑈))2 ∣ 𝑋𝑂 = 𝑥𝑂]]
= argmin𝑀∈ℱ 𝔼[𝔼[(𝑀(𝑋𝑂) − 𝑌)2 ∣ 𝑋𝑂 = 𝑥𝑂]] = 𝑌𝑃ℱ,𝑋𝑂,

where the third line follows from the independence of 𝑋𝑂 and 𝑋𝑈. Hence, the best predictive
and causal models coincide for each 𝑥𝑂. This implies they have the same risk, and hence
goodness‐of‐fit.

Proof of Proposition ǌ. For (i), the statement about predictive R2 is well‐known. That CR2 is
bounded above by 1 follows directly from the fact that risk is non‐negative. To show the
statement about causal R2, consider the following example:

𝑌𝑖(𝑥1,𝑖, 𝑥2,𝑖) = 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖,(A1)

(𝑋1,𝑖𝑋2,𝑖) ∼ 𝒩(ǁ, Σ), Σ = (1 𝜌𝜌 1) .(A2)
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Suppose 𝑋1,𝑖 is observed, but 𝑋2,𝑖 is not. For ℱ unrestricted or linear, the best causal model is𝑌∗𝑋𝑂ℱ(𝑥1,𝑖) = 𝛽1𝑥1,𝑖. Then ℛ(𝑌∗𝑋𝑂ℱ) = 𝛽22 , and hence the goodness‐of‐fit of the causal model is

𝐺(𝑌∗𝑋𝑂ℱ) = 𝛽21 + 2𝛽1𝛽2𝜌𝛽21 + 𝛽22 + 2𝛽1𝛽2𝜌.
To see that this expression can be arbitrarily negative, note that, choosing 𝜌 = −1, the
expression can be rewritten

𝐺(𝑌∗𝑋𝑂ℱ) = 𝛽1(𝛽1 − 2𝛽2)(𝛽1 − 𝛽2)2 ,
and that the term inside the brackets can be made arbitrarily close to zero (from below) by
taking 𝛽1 = 𝛽2 + 𝜖 for 𝜖 sufficiently small.

For (ii), that R2ℱ is monotonically increasing is well‐known. Example A6 shows that CR2ℱ may
not be monotonically increasing.

Before proving Proposition 5, we establish an intermediate step.

Lemma 1. Fix an outcome 𝑌 and a vector of observed features 𝑋𝑂. Suppose these variables have
finite first and second moments and non‐zero variances. Denote by ̃𝑌 the standardized value of 𝑌, bỹ𝑋𝑘 the standardized value of observed feature 𝑋𝑘, and by ̃𝑋𝑂 the corresponding vector of standardized
observed features. Denote by 𝜌𝑋𝑂 the matrix of correlations between the observed features. Then:

(i) The R2
lin can be written: R2

lin(𝑋𝑂) = ̃𝛽𝑃′𝜌𝑋𝑂 ̃𝛽𝑃, where ̃𝛽𝑃 is the vector of OLS coefficients from a
regression of ̃𝑌 on ̃𝑋𝑂 in the population.

(ii) The CR2
lin can be written CR2

lin(𝑋𝑂) = 2 ̃𝛽P𝑋𝑂′𝜌𝑋𝑂 ̃𝛽C𝑋𝑂 − ̃𝛽C𝑋𝑂′𝜌𝑋𝑂 ̃𝛽C𝑋𝑂, where ̃𝛽𝐶 is the vector
of OLS coefficients from a regression of ̃𝑌 on ̃𝑋𝑂 in a hypothetical experiment in which 𝑋𝑈
is distributed according to the population, and 𝑋𝑂 is randomly assigned according to the
population distribution.

Part (i) is well‐known; part (ii) less so.

Proof of Lemma ǉ. It is well‐known that the R2
lin is invariant to affine transformations, and

Proposition 2 shows that this is also true of CR2
lin. Then we can demonstrate the lemma by

considering the standardized versions of all variables. For any linear model𝑀 = 𝛼̃ + ̃𝛽𝑋𝑂:
𝐺(𝑀) = 1 − 𝔼[( ̃𝑌 − 𝑀(𝑋𝑂))2]

Var( ̃𝑌)= 1 − [1 − 2Cov[𝑌 ,𝑀(𝑋𝑂)] + Var[𝑀(𝑋𝑂)]]= 2Cov[ ̃𝑌 , ̃𝛽′ ̃𝑋𝑂] − ̃𝛽′Cov[ ̃𝑋𝑂] ̃𝛽= 2Cov[ ̃𝑌 , ̃𝛽′ ̃𝑋𝑂] − ̃𝛽′𝜌𝑋𝑂 ̃𝛽,
where Cov[ ̃𝑌 , ̃𝑋𝑂] = 𝔼[( ̃𝑋𝑂 − 𝔼[ ̃𝑋])( ̃𝑌 − 𝔼[ ̃𝑌])] = 𝔼[ ̃𝑋𝑂 ̃𝑌 ] ∈ ℝ𝐾.

39



For part (i), take the best predictive model (within the linear function class), 𝑌𝑃(𝑋𝑂) = 𝛼̃𝑃 +̃𝛽𝑃𝑋𝑂. Then Cov[ ̃𝑌 , ̃𝛽𝑃 ̃𝑋𝑂] = ̃𝛽𝑃′Cov[ ̃𝑋𝑂] ̃𝛽𝑃 = ̃𝛽𝑃′𝜌𝑋𝑂 ̃𝛽𝑃′, and hence we are left with R2
lin(𝑋𝑂) =̃𝛽𝑃′𝜌𝑋𝑂 ̃𝛽𝑃.

For part (ii), take the best causalmodel (within the linear function class), 𝑌𝐶(𝑋𝑂) = 𝛼̃𝐶+ ̃𝛽𝐶𝑋𝑂.
Then we have CR2

lin(𝑋𝑂) = 2Cov[ ̃𝑌 , ̃𝛽𝐶′ ̃𝑋𝑂] − ̃𝛽𝐶′𝜌𝑋𝑂 ̃𝛽𝐶.
Now wemove to the main statement.

Proof of Proposition Ǎ. Beginning with the second term on the RHS of the inset equation:

( ̃𝛽P𝑋𝑂 − ̃𝛽C𝑋𝑂)′𝜌𝑋𝑂( ̃𝛽P𝑋𝑂 − ̃𝛽C𝑋𝑂) = ̃𝛽P𝑋𝑂′𝜌𝑋𝑂 ̃𝛽P𝑋𝑂 − 2 ̃𝛽P𝑋𝑂′𝜌𝑋𝑂 ̃𝛽C𝑋𝑂 + ̃𝛽C𝑋𝑂′𝜌𝑋𝑂 ̃𝛽C𝑋𝑂= R2
lin(𝑋𝑂) − CR2

lin(𝑋𝑂),
where the first line follows from the fact 𝜌𝑋𝑂 is a correlation matrix (and so symmetric), and
the second line applies both parts of Lemma 1. Rearranging gives the statement.

B. Proofs for Section 5

Proof of Proposition ǎ. For part (i), 𝑌𝐶ℱ,𝑋𝑂 cannot be identified from the observational sample.
Conversely, for anymodel𝑀,ℛ(𝑀) cannot be identified from the experimental sample. Since𝒞ℛ2ℱ(𝑋𝑂) depends on both

For part (ii), since we have access to the observational sample, for any model 𝑀, ℛ(𝑀) is
identified. The question is thenwhetherwe can identify 𝑌𝐶𝑋𝑂. If the experiment is full‐support,
for each 𝑥𝑂 ∈ 𝒳𝑂, we can identify 𝑌𝐶𝑋𝑂(𝑥𝑂) pointwise, and hence identify the function 𝑌𝐶𝑋𝑂.
Otherwise, we cannot identify 𝑌𝐶𝑋𝑂(𝑥𝑂) for at least some values of 𝑥𝑂.
For part (iii), as before, ℛ(𝑀) is identified by the observational data, for any model𝑀. Under
our assumption that the linear model is well‐specified, the interventional expectation is𝑌𝐶𝑋𝑂(𝑥𝑂) = 𝛼 + ∑𝑂𝑘=1 𝑥𝑂𝛽𝑂. Regressing 𝑌 on 𝑋𝑂 in the experimental data recovers (𝛼, 𝛽), and
hence the interventional expectation 𝑌𝐶𝑋𝑂.
Proof of Proposition Ǐ. Follows immediately from noting that (i) ̂𝑌𝐶ℱ,𝑋𝑂 converges to 𝑌𝐶ℱ,𝑋𝑂,
(ii) for any𝑀, ℛ̂(𝑀) converges to ℛ(𝑀), (iii) V̂ar[𝑌] converges to Var[𝑌], and then applying
Slutskyʼs Theorem.

Proof of Proposition ǐ. For simplicity, denote 𝑋 ≔ 𝑋𝑂.
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For part (i), expand the definition of the CR2 with classical measurement error:

CR2
CME = 1 − 𝔼[𝛽2𝑋2 − 2𝛽𝑋𝑌 − 2𝛽𝑋𝜀 + 𝑌2 + 2𝑌𝜀 + 𝜀2]

Var[𝑌] + Var[𝜀]= 1 − MSE + Var[𝜀]
Var[𝑌] + Var[𝜀]

Now, separately multiply the CR2 without measurement error by Var[𝑌]
Var[𝑌]+Var[𝜀] and rearrange:

CR2 Var[𝑌]
Var[𝑌] + Var[𝜀] = Var[𝑌]

Var[𝑌] + Var[𝜀] − Var[𝑌]MSE
Var[𝑌] (Var[𝑌] + Var[𝜀])= Var[𝑌] + Var[𝜀]

Var[𝑌] + Var[𝜀] − MSE + Var[𝜀]
Var[𝑌] + Var[𝜀]= 1 − MSE + Var[𝜀]

Var[𝑌] + Var[𝜀]= CR2
CME

For part (ii), note that the only difference between the CR2 with and without classical mea‐
surement error is thatMSECME ≠MSE.

MSECME = 𝔼[(𝛽(𝑋 + 𝜀) − 𝑌)2]= 𝔼[𝛽2𝑋2 + 2𝛽2𝑋𝜀 + 𝛽2𝜀2 − 2𝛽𝑋𝑌 − 2𝛽𝑋𝜀 + 𝑌 2]=MSE + 𝔼[2𝛽2𝑋𝜀 + 𝛽2𝜀2 − 2𝛽𝑋𝜀]=MSE + 𝛽2Var[𝜀]
It follows that CR2

CME = CR2 − 𝛽2 Var[𝜀]
Var[𝑌] .

Part (iii) follows from the well‐known result that classical measurement error in the depen‐
dent variable does not bias OLS coefficients. Since the causal coefficient 𝛽 is unchanged, the
CR2𝐶𝑀𝐸 is unchanged.

For part (iv), Var𝐸𝑋𝑃[⋅] refers to the variance in the experiment. It is a well‐known result that
under classical measurement error in the dependent variable, the OLS coefficient will be
downward‐biased as follows: 𝛽CME = 𝛽 Var𝐸𝑋𝑃[𝑋]

Var𝐸𝑋𝑃[𝑋]+Var𝐸𝑋𝑃[𝜀] . The result follows from subtracting

CR2 from CR2
CME and rearranging.
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