Online Appendix

The Online Appendix has six sections, each self-contained. Online Appendix A
discusses some alternative approaches to measure causally explained varia-
tion. Online Appendix B discusses bootstrapping. Online Appendix C presents
simulations. Online Appendix D describes adapting the approach to include
covariates. Online Appendix E shows that non-monotonicity is an inherent
feature of “reasonable” measures of causally explained variation. Online
Appendix F details the applications.

Online Appendix A. Alternative approaches to measure causally ex-
plained variation

We discuss some other approaches to measure the share of variance in an out-
come that is causally explained by a variable. We note how these approaches
sometimes fall short.

Example A1 (Observational R?). The observational R? violates properties (i)
and (vi) of Proposition 1.

Example A2 (Experimental R?). The experimental R? in general fails property
(iii). To see this, note that even when X© does not vary in the population,
experimentally-induced variation can cause the experimental R? to be strictly
positive.

Example A3 (Relative variance of average potential outcome). An alternative
measure is the ratio of the variance of the best causal model to the total
vaf YS  (x©)

variance of Y: . This measure would sometimes conclude that the

Vay Y]
observed features explain “more than 100%” of the variation in Y. To see this,

consider

(C1) Y(Xl,i’XZ,i) =Xy, — X2,

(C2) (Xl”') ~N(0,%), T= (1 P )
Xo,i p 1

for p € (—1,1], where (C1) is the potential outcome function, and (C2) is the
joint distribution of features. Suppose X is observed, but X, is unobserved.
The best causal model is then Y¢(X;) = X;, and hence Var[Y¢(X;)] = 1. In
contrast, Var[Y] =1+1—-2p < 1forp > 1/2.

Example A4 (Coefficient in a regression of standardized Y on standardized

44



X©.). Analternative measure is the coefficient in a regression in experimental
data of standardized Y on standardized X©, where the standardization is with
respect to the population variances. Unfortunately, this coefficient cannot
generally be interpreted as the share of variation causally explained by X©,
even in the special case in which there is a single unobserved feature X©,
and the true potential outcome function is linear. To see this, consider again
the example from section 2. The standardized regression coefficient on C;

is —% __ This quantity may exceed one. For example, let § = 1.5,y =

\ B2+y2+28yp

—1,p = 0.8. Then, the standardized coefficient equals 1.63. Using this measure,
we would conclude that 163% of the observed differences in test scores are
explained by class size.
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Online Appendix B. Details of bootstrapping

We compute standard errors through bootstrapping.

Algorithm 1: Bootstrap Variance Estimation
Data: Y, X9, S
Result: Bootstrapped Variance Estimator V
1 fori < 1toBdo
2 | Construct a bootstrap dataset (Y(®), X0 5®)) by sampling Ny, rows

of (Y, X9, S) with replacement from the observational sample, and
Ng rows of (Y, X9, S) with replacement from the experimental

sample;
3 Append these datasets together to create a dataset of size
N = Ny + Ng;
P 2, b . .
4 Compute the CR? estimator CR ®) based on (Y(®), x0-(®) (b)) in this
appended dataset;
5 Define

This bootstrap is reasonably simple to implement, and performs well in
our simulations, but has the disadvantage that is less transparent than the
Delta method, and more computationally costly.

46



Online Appendix C. Simulations

Simulation 1: independent features in a well-specified linear model. We
begin with the simplest non-trivial setting, in which the potential outcome
function is linear and the feature variables are independent of one another.
Say there are two features, only one of which is observed, with true data-
generating process:

(C3) Y(X1,X5) = BiXq + X,

(C4) (Xl) ~N(0,%), T= (1 0),
X, 0 1

where (C3) is the (linear) potential outcome function, and (C4) is the joint
distribution of (X;,X,). We vary the causal effect of the observed feature (8,)
as part of the simulation.

Appendix Figure 1(A) summarizes our results. We begin with the true
CR?(X;). Since (C3) is linear, CR*(X;) = CR},(X;); since observed and unob-
served features are independent, this also coincides with the predictive R2(X;).
When X; has no effect on the outcome (3; = 0), CR*(X;) = 0; as 8, increases (in
magnitude), CR*(X;) rises, eventually approaching 1.

To examine the plug-in estimator’s performance, we specify several addi-
tional parameters. The analyst collects a sample of size N, of which three-fifths
of units are in the observational sample (p = 0.6). The experiment consists
of two equally-probable treatment arms, assigning units to X; € {0,1}. The
navy dots show the performance of the estimator when the full sample size
is N = 200; we perform 1,000 simulations and present the mean estimate. As
expected, the estimator displays a downward bias which falls fairly quickly
as the number of units increases, as the light blue (N = 500) and orange
(N = 2,000) series show.

Simulation 2: correlated features in a well-specified linear model. Our
second simulation maintains the linear model, but allows for correlation
between features. As before, there are two features, one of which is observed,
with data-generating process:

(Cs) Y(X1,X,) =X,

(C6) <X1> ~N(0,5), = (1 P )
X, e 1

Relative to the first simulation, we fix the first feature to have no causal effect
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(81 = 0), but vary the correlation between features (p).

Appendix Figure 1(B) summarizes our results. For any p, CR*(X;) = 0, since
X; does not have any effect on Y. In contrast, the predictive R? is strictly
positive when p # 0: X; does have some predictive power due to its correlation
with X,. As before, the plug-in estimator (using the parameters as for the first
simulation) shows a finite-sample downward bias that vanishes reasonably
quickly in the number of observations.

Simulation 3: correlated features in a misspecified model. Finally, we
introduce misspecification. As before, there are two features, one of which
is observed, but now we introduce a non-linearity into the true potential
outcome function:

(C7) Y(X1,X5) = 0.2X; + ¥X7 + X,

(Xl) (5) ( 1 0.5)
(C8) ~NwE), u=[("] == .
X, 0 05 1

We vary y as part of the simulation. Since the true potential outcome function
is quadratic, the non-parametric CR*(X;) coincides with CRfluad(Xl), where
quad denotes the class of quadratic models (x; — u+vx; +7x}). Asy increases,
CR*(X,;) increases, and approaches 1 for y large.

We now turn to the plug-in estimator. We consider two experiments, each
with three treatment arms to allow for estimating a quadratic model. In
experiment (a) (Panel (C)), the experimental sample is spit evenly between
being assigned the mean of X, or one standard deviation above or below. Solid
circles show mean estimates under a correctly-specified quadratic model,;
they exhibit a small, finite-sample downward bias that vanishes reasonably
quickly as N grows. Hollow circles show mean estimates from a misspecified
linear model. Here, the plug-in estimator need not converge to the true CR?.
In practice, the degree of divergence is modest: intuitively, a local linear
approximation around the mean of X; recovers an average effect “close to”
the underlying quadratic effect.

In experiment (b) (Panel (D)), the experiment instead evenly divides units
between being two, three, or four standard deviations above the mean of
X;. As before, the well-specified quadratic estimates (solid circles) converge
to the true CR®. Now, however, the misspecified linear estimates (in hollow
circles) differ substantially from the true CR?. Intuitively, the linear model
recovers a local average treatment effect in the experiment; as a result, the fit of
the causal model estimated from the experiment is worse when the treatment
arms are further away from the mass of the feature in the population.
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Appendix Figure 1. Results of simulations

(A) Results of simulation 1 (B) Results of simulation 2
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Notes: This figure presents results from our simulations. Panel (A) displays results from simu-
lation 1: the purple line displays the true CR?, and dots show the mean estimated CR? in simu-
lations of different sizes. Panel (B) replicates Panel (A) for Simulation 2. Panel (C) replicates
Panel (A) for the first experiment in Simulation 3, and Panel (D) for the second experiment.
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Online Appendix D. Incorporating covariates

In the main text, we equated observable and manipulable features. That is, we
assumed that all observed features could also be changed in an experiment.
This distinction is partly conceptual: since it is difficult to identify the causal
effect of these features, it is also difficult to identify the share of variation
they causally explain.

However, we may incorporate these covariates to compute the share of
variation causally explained within a subpopulation defined by a covariate.
Say a non-manipulable variable M is observed and treatment is randomly
assigned within M. Then, a natural approach is to compute the best causal
model Y)go,m for each value m of the non-manipulable feature M, and then
compute {Can}mesupp(M). This allows the analyst to report the share of varia-
tion causally explained across subgroups (e.g., among men vs. women). We
do this in our application to blood pressure and salt intake.

Another approach, which we do not pursue, is to allow the causal model
in the general population to vary by the level of the covariate. Suppose the
analyst aims to assess the share of variation explained in the population
overall by a causal model which allows the effects of the feature of interest
to differ between subgroups. It is tempting to define the “combined” causal
model Y5, (x0) = 3 csupp(M)
the value given by the causal model for that unit’s subgroup. One might

m = m’}Y)?O m,(xo), which assigns to each unit

then assess the fit of this model by evaluating the mean squared error of
Y)fo. To see why this approach is unreasonable, suppose for a moment that
there is no causal effect of X© on the outcome, but the subgroup M is highly
predictive of the outcome; then, on can easily achieve a very high fit, despite
X9 explaining none of the variation in Y. The difficulty is that, when fitting
separate causal models in each sub-group and then combining them, the
combined model allows for different “intercepts” for each sub-group, and
hence overstates the share of variance explained.
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Online Appendix E. An impossibility result for monotonic measures
of goodness-of-fit

The main text discussed a particular feature of the CR*: the possibility that
the share of variance causally explained falls as more features are observed.
We claimed that this is an inherent attribute of measures of variation causally
explained. We now formalise this claim through an axiomatic analysis.
Denote the set of features by . Denote its power set by 2%, with typical
element X. Given a potential outcome function Y(-), a subset of features X, and
a distribution of features B, define a general measure of variation causally
explained as a function pp, y : 2% - Rsuch that, if (B, Y) and (B, ¥) induce the
same joint distribution of Yand the features in X, and induce the same average
potential outcome as a function of the features in X, then pp, y(X) = pp, y(X).**
We begin by describing three axioms.

Axiom 1 (Completeness). A general measure of variation causally explained
satisfies completeness if the measure is equal to one whenever the full set of features
is observed: pPX’Y(DZ ) = 1 for any Py and any Y ().

Axiom 2 (Limited information). A general measure of variation causally ex-
plained satisfies limited information if the measure is strictly less than one when-
ever the observed data rule out the possibility that the full set of features has been
observed. Fix the set of observed features X. Denote the corresponding average poten-
tial outcome function by Yy. Suppose that the distribution of observed features, and
Yy, could not alone generate the population joint distribution of the outcome and
features. Then pp, y(X) < 1.

Axiom 3 (Monotonicity). A general measure of variation causally explained sat-
isfies monotonicity if observing additional features causes the share of variation
explained to weakly increase. Formally, for any X C X', pp, y(X') > pp, y(X).

Motivation for axioms. When we say that no reasonable measure satisfies
no monotonicity, we mean that no measure satisfies monotonicity once we
restrict to measures that satisfy completeness and limited information. We
argue that any reasonable measure should have these properties. Say that a
measure did not satisfy completeness. Then, even observing all of the sources
of variation in the outcome, our measure would still indicate that we cannot
explain all the variation. This seems unreasonable. Essentially the converse

22This restriction is motivated by the fact that, even with observational data on Y and the
variables in X, and experimental data in which X is randomly assigned and the resulting
values of Y are recorded, the analyst cannot identify anything that is not a function of the
joint distribution or the average potential outcome.
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intuition holds for limited information: if a measure does not satisfy limited
information, then it sometimes indicates that the observed features fully
explain variation in the outcome, even though there is no potential outcomes
function that is consistent with the view that there are no other determinants
of the outcome. We consider both of these axioms essential for a reasonable
measure of variation causally explained.

Logical independence. These axioms are logically independent: no pair of
axioms implies the third axiom. To see this, note that the standard measure
of predictive R? satisfies completeness and monotonicity, but not limited
information. The CR? satisfies completeness and limited information, but
not monotonicity. On the other hand, limited information and monotonicity,
but not completeness, are satisfied by a measure which trivially defines any
set of features to explain none of the variation in the outcome. This shows
that this description of axioms does not involve any redundancy.

Impossibility. We now state and prove an impossibility result.

Proposition A1. No general measure of the share of variation causally explained
satisfies completeness, limited information, and monotonicity.

Proof of Proposition A1. We prove the result by way of a simple example. Say
the potential outcome functionis Y(X;, X5, X3) = yX; +8X,+8X;, fory # 0,8 # 0,
where X, and X; are perfectly negatively correlated, and X; is independent of
X, (and hence X;). Denote this population distribution of features by B, and
its marginal distributions by B, B, and B}, respectively. Denote by B the
joint distribution of the first and second features.

Suppose by way of contradiction that there is such a measure, p. Com-
pleteness requires pp, y({X;}) = 1. To see this, say there is only one feature,
X;, with distribution B}, and the potential outcome function is Y(X;) = yX;.
Completeness requires Ppl y({Xi1}) = 1. Since these two cases induce the same
distribution of the outcome and observable features, and have the same
average potential outcome, we must also have pp y({X;}) = 1.

The second step is to argue limited information requires pp, y({X7, X5}) < 1.
This is because, if (X;,X,) are observed, the average potential outcome func-
tion is yx; + fx, + BE[X;]. This average potential outcome, and the population
distribution of observed features, could not generate the population joint dis-
tribution of the outcome and features, since, in the population, Yand X, are in-
dependent. By consequence, limited information requires pp, y({X7,X,}) < 1.

The third step is to note that applying monotonicity to pp, y({X;}) = 1 gives
Ppy,v(1X1,X2}) > 1. Since the second and third steps contradict one another,
we have shown that no measure can satisfy all three axioms. O
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Our conclusion from Proposition A1 is that, once we restrict attention
to “reasonable” measures, the possibility of non-monotonicity is inevitable.
Intuitively, when we seek to predict an outcome, knowing more features can
only be helpful. When we seek to causally explain an outcome, observing an
additional feature can “set us back”, indicating that the feature suppresses
rather than generates variance in the outcome.
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Online Appendix F. Details of applications

F.1 Details of application 1

Data. The data are made available by Kremer et al. (2011) via Harvard
Dataverse.

Processing and cleaning. We restrict both the experimental and obser-
vational samples to springs. With this restriction, there are 274 units in the
observational sample, and 726 units in the experimental sample.

F.2 Details of application 2

Data. The data are made available in Achilles et al. (Tennessee’s Student
Teacher Achievement Ratio (STAR) project).

Processing and cleaning. For the experimental dataset, we restrict atten-
tion to students with non-missing schools, class sizes, reading scores, and
math scores in each of grades K-3. For the observational dataset, we have
access to students’ information only in Grades 1-3; we restrict attention to
students with non-missing data in those years. For each student in the exper-
imental (observational) data, we express reading and math scores in grades
K-3 (1-3) in percentage points, and then take the unweighted mean over the
grades for each of reading and math scores. We use this mean as our outcome
variable. For each student in the experimental (observational) data, we com-
pute the mean class size in grades K-3 (1-3), and use this mean as our feature
variable of interest.

Complier characteristics. Following the approach described in Abadie
(2003) and Hull (2025), we assess the characteristics of the complier group
through a two-stage least-squares regression of the form

(C9) Class size; X ¢; = y + 8Class size; +¢;
(C10) Class size; = ¢ + OAssigned small. +7;,

where ¢; is the characteristic of interest. In each case, we first demean the
characteristic of interest so a test for the null hypothesis that § # 0 can be
interpreted as a test for the null hypothesis that the mean value of the charac-
teristic among compliers is the same as the mean value of the characteristic
among non-compliers.

We run these regressions in the experimental sample. Appendix Table 1 re-
ports the two-stage least-squares coefficients from these regressions. Compli-
ers are similar to non-compliers in terms of gender, race, and socioeconomic
status, as proxied by free and reduced lunch receipt. This is consistent with
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the observation in Krueger (1999) that the rate of compliance was high.

Appendix Table 1. Complier characteristics in Tennessee STAR

Minority FRL
Male Race Recipient
(1) (2) (3)

Constant 0.37 1.10 -1.94

(1.369) (1.233) (1.201)
Coefficient -0.02 -0.05 0.10

(0.067) (0.061) (0.059)
Observations 2529 2529 2529

Notes: This table presents estimates of (y, §) from two-stage least-squares regressions corre-
sponding to equations (C9) and (C10) for three student characteristics c;. The first row shows
the estimated value of ¥, and the third row shows the estimated value of § (with corresponding
standard errors in the second and fourth rows, respectively). The fifth row shows the number
of observations. In column (1), ¢; is an indicator variable for the student being male. In column
(2), c; is an indicator variable for the student not being white. In column (3), ¢; is the share of
years in grades K-3 that the student has free or reduced lunch status.

First stage. Next, we consider the first-stage relation between treatment
assignment and class size. Appendix Table 2 presents estimates of equation
(6). We present estimated first stages for grades K-3, as well as for the average
class size over these grades, which we use as our ultimate variable of interest.
The effects of treatment assignment are large and highly significant, with
F-statistics well above 1,000.

Appendix Table 2. First stage in Tennessee STAR

Class size Classsize Classsize Classsize Class size
grade K grade 1 grade 2 grade 3 avg. K-3

(1) (2) (3) (4) (5)
Constant 22.24 22.40 22.19 22.25 22.27
(0.046) (0.062) (0.068) (0.078) (0.045)
Assigned small -7.28 -6.43 -6.45 -6.05 -6.55
(0.082) (0.111) (0.121) (0.140) (0.081)
Observations 2771 2771 2771 2771 2771
F-statistic 7979.672 3336.140 2844.131 1860.067  6518.657
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Notes: This table presents estimates of (7€, o€) from an OLS regression corresponding to
equation (6) in the experimental data. The first row shows the estimated value of 77€, and the
third row shows the estimated value of p€ (with corresponding standard errors in the second
and fourth rows, respectively). The fifth row shows the number of observations. The sixth
row shows the F-statistic. In each column, the outcome variable is the number of students in
the child’s class, varying the grade in which this number is measured.

Best predictive and causal models. Next, we estimate the best predictive
and causal models. Appendix Table 3 presents estimates of equations (8)
(Panel A) and (7) (Panel B). In both the best predictive and best causal mod-
els, class size has a reasonably large and statistically significant effect on
test scores, but the effect is substantially smaller in the best causal model,
which is consistent with omitted variables biasing the observational relation
downward relative to the true causal effect.

Appendix Table 3. Best predictive and causal models in Tennessee STAR

Reading Math
(1) (2)
A. Best predictive model (observational data)
Constant 121.36 111.16
(5.643) (4.309)
Class size -1.56 -0.91
(0.243) (0.186)
Observations 501 501
B. Best causal model (experimental data)
Constant 93.10 94.86
(1.411) (1.137)
Class size -0.32 -0.23
(0.069) (0.055)
Observations 2771 2771

Notes: This table presents the best predictive and causal models in the STAR setting. Column (1)
presents results for reading scores, and column (2) for math scores. Panel A shows estimates
of (af, BF) from an OLS regression corresponding to equation (8) in the observational data,
for subjects s corresponding to reading and math scores. The first row shows the estimated
value of af, and the third row shows the estimated value of 8F (with corresponding standard
errors in the second and fourth rows, respectively). The fifth row shows the number of obser-
vations. Both class size and test scores are averaged over grades. Panel B replicates Panel A,
instead presenting estimates of (a$, 8S) from a regression corresponding to equation (7) in
the experimental data.

Fit of the best predictive and causal models. Finally, we assess the fit of the
best predictive and causal models. Appendix Table 4 summarizes our results.
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Panel A shows the variance of test scores and the mean squared error of the
best predictive and causal model, i.e. the variance of the residuals.

Panel B shows the corresponding shares of variance causally explained,
thatis, 1 — MSE/ Var[Score]. These values are computed directly from Panel
A. As shown in Figure 2(a), class size explains much more predictively than
causally.

Panel C presents various hypothesis tests, computed by bootstrapping. We
reject that the causal R? for reading is zero at the 1% level: that is, we reject
the null hypothesis that class size causally explains no variation in reading
scores. We cannot reject the corresponding null hypothesis for math scores
at the 5% level, though the difference between reading and math scores is
itself insignificant.

Appendix Table 4. Share of variance in test scores causally explained by class size

Reading Reading Math Math
obs. data exp.data obs.data exp.data
(1) (2) (3) (4)

A. Outcome variance and MSE

Var[Score] 146.15 112.89 82.52 73.29
MSE[Best predictive model] 135.02 - 78.71 -
MSE[Best causal model] 142.34 111.74 81.21 72.56
B. Share of variance explained

% of var. predictively explained in pop. (obs. R?) 7.62 - 4.62 -
% of var. causally explained in exp. (exp. R?) - 1.02 - 1.00
% of var. causally explained in pop. (CR?) 2.61 - 1.59 -
C. Hypothesis tests

CR? for read =0 0.009

CR? for math=0 0.059

CR? for read = CR? for math 0.1540

Notes: This table presents the share of variance in test scores causally explained by variance in class size.
The first two columns present results for reading scores. Column (1) presents results in the observational
data, and column (2) in the experimental data. Columns (3)-(4) replicate columns (1)-(2) for math scores.
Panel A shows the outcome variance and mean squared error of the models. Panel B shows the share of
variance explained. Panel C shows hypothesis tests involving the CR?, computed using the bootstrapping
described in subsection 5.3.

F.3 Details of application 3

Data. The data are made available by Acemoglu, Johnson, and Robinson
(2001) via Daron Acemoglu’s website.
Processing and cleaning. Following Acemoglu, Johnson, and Robinson
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(2001), we define income as the logarithm of per capita GDP in 1995, and
average protection against expropriation as the average of 1985-1995 values
of protection against expropriation assigned by Political Risk Services.
Complier characteristics. Appendix Table 5 replicates Appendix Table 1 for
this application. There is some evidence that compliers are not geographically
representative of the full sample: they are less likely to be drawn from Africa,
and perhaps a little more northern. Thankfully, Acemoglu, Johnson, and
Robinson (2001) show that their results are similar in Africa vs. outside.

Appendix Table 5. Complier characteristics in Acemoglu et al. (2001)

Africa Asia Latitude
(1) (2) (3)
Constant 17.02 -5.28 -4.00
(4.224) (2.800) (1.170)
Coefficient -2.65 0.83 0.62
(0.644) (0.427) (0.178)
Observations 64 64 64

Notes: This table replicates Appendix Table 1 in the context of Acemoglu, Johnson, and Robin-
son (2001). In column (1), the characteristic is an indicator for the country being in Africa. In
column (2), the characteristic is an indicator for the country being in Asia. In column (3), the
characteristic is the country’s latitude.

First stage. We estimate equation (9). Our results replicate column (9) in
Table 3 of Acemoglu, Johnson, and Robinson (2001).

Best predictive and causal models. We then estimate the best predictive
and causal models. Appendix Table 6 replicates Appendix Table 3 in the
context of Acemoglu, Johnson, and Robinson (2001).%2 Protection against ex-
propriation risk is positively related to log GDP per capita, both predictively
and causally. The causal coefficient is somewhat larger than the observa-
tional coefficient, which Acemoglu, Johnson, and Robinson (2001) attribute
to measurement error in expropriation risk.

2We include Appendix Table 6 for completeness, though both panels of the table are con-
tained in Acemoglu, Johnson, and Robinson (2001): the slope coefficient in Panel A corresponds
to the coefficient in column (2) of their Table 2, and the slope coefficient in Panel B corresponds
to the coefficient in column (1) of their Table 4.
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Appendix Table 6. Best predictive and causal models in Acemoglu et al. (2001)

Log GDP per Capita
(1)
A. Best predictive model
Constant 4.66
(0.409)
Protection against expropriation risk 0.52
(0.061)
Observations 64
B. Best causal model
Constant 1.91
(1.011)
Protection against expropriation risk 0.94
(0.154)
Observations 64

Notes: This table replicates Appendix Table 3 in the context of Acemoglu, Johnson, and Robin-
son (2001).

Fit of the best predictive and causal models. Finally, we compute the fit of
the best predictive and causal models (Appendix Table 7). Panel A presents
the variance of the outcome and mean squared error for the best predictive
and causal models, i.e. the variance of the residuals. The best predictive model
for GDP, as a linear function of expropriation risk, reduces the mean squared
error by more than half; in consequence, the predictive R? is very high.?4 The
best causal model reduces MSE much less.

Panel B presents the corresponding share of variance predictively and
causally explained. The point estimates indicate that institutions predict
more than half of the variation in national income, and causally explain
around one fifth. Panel C shows, however, that this estimated CR? is noisy:
for instance, we cannot reject the hypothesis that institutions explain no vari-
ation in income. This noise comes from using few countries in the analysis.

24Note that the measurement error in expropriation risk, which Acemoglu, Johnson, and
Robinson (2001) posit, would imply that the true predictive R? is even higher.
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Appendix Table 7. Share of variance in GDP causally explained by institutions

Value
(1)

A. Outcome variance and mean squared error
Var[Log GDP] 1.07
MSE|[Best predictive model] 0.49
MSE[Best causal model] 0.87
B. Share of variance explained
% of var. predictively explained in pop. (obs. R?) 54.01%
% of var. causally explained in pop. (CR?) 18.69%
C. Hypothesis tests
CR*=0 0.17

Notes: This table replicates Appendix Table 4 in the context of Acemoglu, Johnson, and Robin-
son (2001).

Comparison of institutions and childhood malaria as causes of cross-
country income differences. To show how to use CR? to compare different
causes of variation, we use data on the effect of malaria in childhood on
national income from Bleakley (2010).2> We first express the treatment ef-
fect in Bleakley (2010) as a treatment effect on adulthood income per unit
of childhood malaria incidence. In historical US data, Bleakley (2010) finds
an income effect of 0.16 log points for cohorts moving from the 95th to 5th
percentile of pre-eradication malaria intensity (Table 5, averaging results
using the Occupational Income Score and Duncan’s Index). To put this effect
into units of incidence, we calculate the difference in pre-eradication malaria
childhood incidence between 95th and 5th percentile areas. Maxcy (1923)
indicates that annual malaria mortality is 17.8 per 10,000 people in the 95th
percentile and zero in the 5th percentile; the case fatality rate is 0.5%. As
such, we estimate the difference in total population incidence between the
95th and 5th percentile to be 35.6%. Following GiveWell (2023), we adjust this
population incidence to childhood incidence using the fact that childhood
incidence in the U.S. is about 1.35 times population incidence, i.e. we multi-
ply population incidence by 1.35. The treatment effect in units of childhood
malaria incidence is thus 0.33 log points, or a 39.5% increase in adulthood
income from eradication.

Second, we gather data on childhood malaria incidence for the sample in
Acemoglu, Johnson, and Robinson (2001). The GDP per capita data in that

25We base our calculation partly on the methodology in GiveWell (2023).
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paper is measured in 1995. Ideally, we would use incidence data from around
1960: cohorts that were adults in 1995. However, historical global data is
sparse. We therefore rely on the earliest data from the Malaria Atlas Project
(2026), year 2000.2° While the malaria parasite prevalent in the Americas was
probably mostly Plasmodium vivax (Bleakley 2010), much Malaria around the
world today is Plasmodium falciparum. The data includes both P. vivax and
P. falciparum incidence,?” and we apply the causal effect of Bleakley (2010)
to both. We also make a transportability assumption. We use the effect in
Bleakley (2010) estimated in the US historically, and apply it to other countries
in 2000. We also multiply the incidence data by 1.35 as described above to
approximate childhood incidence from total population incidence. We then
calculate the CR? of malaria in childhood.

F.4 Details of application 4

Data. The observational data are available from the UK Data Service under
study number 6533.

For our experimental data, we use the DASH-Sodium experiment. We con-
struct the estimated pooled causal effect of sodium using Figure 1A of Sacks
et al. (2001), and the estimated causal effects by gender using Figure 2A of
Sacks et al. (2001). The study recruited 412 U.S. participants with normal,
high-normal, or high blood pressure.?® These people were randomised into a
control group and six treatment groups. Each treatment was a combination
of 1) a typical US diet vs. a healthy diet and 2) low, intermediate, or high
salt levels (50, 100, and 150 mmol sodium per day respectively). Study staff
prepared the food, and participants got all their meals and snacks at an out-
patient clinic. After a two-week run-in period during which everyone ate
a high-sodium control diet, participants followed their assigned treatment
diet for 30 days. At the end of the month, researchers measured participants’
blood pressure, which is the main outcome of the study.

Best predictive and causal models. We estimate the best causal model
in equation (11) using Figure 1A of Sacks et al. (2001). We estimate the best
predictive model in the observational data.

26The distribution of Malaria has changed somewhat between 1960 and 2000 (Hay et
al. 2004).

?’The variable we construct is the sum of the incidence rates for both parasite types (the
number of newly diagnosed malaria cases per 1,000 population, in a given year).

28US guidelines on what blood pressure is normal or high has changed over time. At the time
of the study, a blood pressure of 125 mm Hg systolic and 85 mm Hg diastolic was considered
normal (Joint National Committee on Prevention Detection Evaluation and Treatment of High
Blood Pressure 1997). Some current guidelines (e.g., Whelton et al. 2018) would consider it
high. The study required participants to have a diastolic blood pressure of 80-95 mm Hg and a
systolic blood pressure of 120-160 mm Hg.
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Fit of the best predictive and causal models. Appendix Table 8 summarizes
our results. Panel A shows that, both pooling genders and for men and women
separately, the best predictive and causal models reduce mean squared error
relative to the baseline variance of blood pressure. This reduction is much
smaller for women. In consequence, the share of variance explained for
women is substantially lower than for men.

Appendix Table 8. Share of variance in blood pressure causally explained by salt intake

Pooled Men Women

(1) (2) (3)

A. Outcome variance and mean squared error

Var[BP] 286.38 255.74 305.06
MSE[Best predictive model] 271.61 237.86 299.63
MSE[Best causal model] 271.75 238.13 302.73

B. Share of variance explained
% of var. predictively explained in pop. (obs. R?) 5.16% 6.99% 1.78%
% of var. causally explained in pop. (CR?) 5.11% 6.89% 0.76%

Notes: This table replicates Appendix Table 4 for our application to the share of variation in
blood pressure explained by salt intake.
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