
Online Appendix

TheOnlineAppendix has six sections, each self‐contained. OnlineAppendixA

discusses some alternative approaches to measure causally explained varia‐

tion. Online Appendix B discusses bootstrapping. Online Appendix C presents

simulations. Online Appendix D describes adapting the approach to include

covariates. Online Appendix E shows that non‐monotonicity is an inherent

feature of “reasonable” measures of causally explained variation. Online

Appendix F details the applications.

Online Appendix A. Alternative approaches to measure causally ex‐

plained variation

We discuss some other approaches tomeasure the share of variance in an out‐

come that is causally explained by a variable. We note how these approaches

sometimes fall short.

Example A1 (Observational R2). The observational R2 violates properties (i)

and (vi) of Proposition 1.

ExampleA2 (ExperimentalR2). The experimentalR2 in general fails property

(iii). To see this, note that even when 𝑋𝑂 does not vary in the population,

experimentally‐induced variation can cause the experimentalR2 to be strictly

positive.

Example A3 (Relative variance of average potential outcome). An alternative

measure is the ratio of the variance of the best causal model to the total

variance of 𝑌:
Var[𝑌𝐶

ℱ,𝑋𝑂(𝑋
𝑂)]

Var[𝑌]
. This measure would sometimes conclude that the

observed features explain “more than 100%” of the variation in 𝑌. To see this,

consider

𝑌(𝑋1,𝑖, 𝑋2,𝑖) = 𝑋1,𝑖 − 𝑋2,𝑖,(C1)

(
𝑋1,𝑖
𝑋2,𝑖

) ∼ 𝒩(0, Σ), Σ = (
1 𝜌
𝜌 1

) ,(C2)

for 𝜌 ∈ (−1, 1], where (C1) is the potential outcome function, and (C2) is the

joint distribution of features. Suppose 𝑋1 is observed, but 𝑋2 is unobserved.
The best causal model is then 𝑌𝐶(𝑋1) = 𝑋1, and hence Var[𝑌𝐶(𝑋1)] = 1. In
contrast, Var[𝑌] = 1 + 1 − 2𝜌 < 1 for 𝜌 > 1/2.

Example A4 (Coefficient in a regression of standardized 𝑌 on standardized
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𝑋𝑂.). An alternativemeasure is the coefficient in a regression in experimental

data of standardized 𝑌 on standardized 𝑋𝑂, where the standardization is with

respect to the population variances. Unfortunately, this coefficient cannot

generally be interpreted as the share of variation causally explained by 𝑋𝑂,

even in the special case in which there is a single unobserved feature 𝑋𝑂,

and the true potential outcome function is linear. To see this, consider again

the example from section 2. The standardized regression coefficient on 𝐶𝑖
is

𝛽

√𝛽2+𝛾2+2𝛽𝛾𝜌
. This quantity may exceed one. For example, let 𝛽 = 1.5, 𝛾 =

−1, 𝜌 = 0.8. Then, the standardized coefficient equals 1.63. Using this measure,

we would conclude that 163% of the observed differences in test scores are

explained by class size.
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Online Appendix B. Details of bootstrapping

We compute standard errors through bootstrapping.

Algorithm 1: Bootstrap Variance Estimation

Data: 𝑌, 𝑋𝑂, 𝑆
Result: Bootstrapped Variance Estimator ̂𝑉

1 for 𝑖 ← 1 to 𝐵 do

2 Construct a bootstrap dataset (𝑌 (𝑏), 𝑋𝑂,(𝑏), 𝑆(𝑏)) by sampling 𝑁𝑂 rows

of (𝑌 , 𝑋𝑂, 𝑆)with replacement from the observational sample, and

𝑁𝐸 rows of (𝑌 , 𝑋𝑂, 𝑆)with replacement from the experimental

sample;

3 Append these datasets together to create a dataset of size

𝑁 = 𝑁𝑂 + 𝑁𝐸;

4 Compute the CR2 estimator ĈR
2,(𝑏)

based on (𝑌 (𝑏), 𝑋𝑂,(𝑏), 𝑆(𝑏)) in this

appended dataset;

5 Define

̂𝑉 = 1
𝐵

𝐵
∑
𝑏=1

[(ĈR
2,(𝑏)

− 1
𝐵

𝐵
∑
𝑏=1

ĈR
2,(𝑏)

)2];

This bootstrap is reasonably simple to implement, and performs well in

our simulations, but has the disadvantage that is less transparent than the

Delta method, and more computationally costly.
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Online Appendix C. Simulations

Simulation 1: independent features in a well‐specified linear model. We

begin with the simplest non‐trivial setting, in which the potential outcome

function is linear and the feature variables are independent of one another.

Say there are two features, only one of which is observed, with true data‐

generating process:

𝑌(𝑋1, 𝑋2) = 𝛽1𝑋1 + 𝑋2(C3)

(
𝑋1
𝑋2
) ∼ 𝒩(0, Σ), Σ = (

1 0
0 1

) ,(C4)

where (C3) is the (linear) potential outcome function, and (C4) is the joint

distribution of (𝑋1, 𝑋2). We vary the causal effect of the observed feature (𝛽1)
as part of the simulation.

Appendix Figure 1(A) summarizes our results. We begin with the true

CR2(𝑋1). Since (C3) is linear, CR2(𝑋1) = CR2
lin(𝑋1); since observed and unob‐

served features are independent, this also coincideswith thepredictiveR2(𝑋1).
When 𝑋1 has no effect on the outcome (𝛽1 = 0), CR2(𝑋1) = 0; as 𝛽1 increases (in
magnitude), CR2(𝑋1) rises, eventually approaching 1.

To examine the plug‐in estimatorʼs performance, we specify several addi‐

tional parameters.The analyst collects a sample of size𝑁, ofwhich three‐fifths

of units are in the observational sample (𝑝 = 0.6). The experiment consists

of two equally‐probable treatment arms, assigning units to 𝑋1 ∈ {0, 1}. The
navy dots show the performance of the estimator when the full sample size

is 𝑁 = 200; we perform 1, 000 simulations and present the mean estimate. As

expected, the estimator displays a downward bias which falls fairly quickly

as the number of units increases, as the light blue (𝑁 = 500) and orange

(𝑁 = 2, 000) series show.
Simulation 2: correlated features in a well‐specified linear model. Our

second simulation maintains the linear model, but allows for correlation

between features. As before, there are two features, one of which is observed,

with data‐generating process:

𝑌(𝑋1, 𝑋2) = 𝑋2(C5)

(
𝑋1
𝑋2
) ∼ 𝒩(0, Σ), Σ = (

1 𝜌
𝜌 1

) .(C6)

Relative to the first simulation, we fix the first feature to have no causal effect
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(𝛽1 = 0), but vary the correlation between features (𝜌).
Appendix Figure 1(B) summarizes our results. For any 𝜌, CR2(𝑋1) = 0, since

𝑋1 does not have any effect on 𝑌. In contrast, the predictive R2 is strictly

positivewhen 𝜌 ≠ 0:𝑋1 does have some predictive power due to its correlation

with 𝑋2. As before, the plug‐in estimator (using the parameters as for the first

simulation) shows a finite‐sample downward bias that vanishes reasonably

quickly in the number of observations.

Simulation 3: correlated features in a misspecified model. Finally, we

introduce misspecification. As before, there are two features, one of which

is observed, but now we introduce a non‐linearity into the true potential

outcome function:

𝑌(𝑋1, 𝑋2) = 0.2𝑋1 + 𝛾𝑋2
1 + 𝑋2(C7)

(
𝑋1
𝑋2
) ∼ 𝒩(𝜇, Σ), 𝜇 = (

5
0
) , Σ = (

1 0.5
0.5 1

) .(C8)

We vary 𝛾 as part of the simulation. Since the true potential outcome function

is quadratic, the non‐parametric CR2(𝑋1) coincides with CR2
quad(𝑋1), where

quad denotes the class of quadraticmodels (𝑥1 → 𝜇+𝜈𝑥1+𝜋𝑥21). As 𝛾 increases,
CR2(𝑋1) increases, and approaches 1 for 𝛾 large.

We now turn to the plug‐in estimator.We consider two experiments, each

with three treatment arms to allow for estimating a quadratic model. In

experiment (a) (Panel (C)), the experimental sample is spit evenly between

being assigned themeanof𝑋1, or one standarddeviation aboveorbelow. Solid

circles show mean estimates under a correctly‐specified quadratic model;

they exhibit a small, finite‐sample downward bias that vanishes reasonably

quickly as 𝑁 grows. Hollow circles showmean estimates from a misspecified

linear model. Here, the plug‐in estimator need not converge to the true CR2.

In practice, the degree of divergence is modest: intuitively, a local linear

approximation around the mean of 𝑋1 recovers an average effect “close to”

the underlying quadratic effect.

In experiment (b) (Panel (D)), the experiment instead evenly divides units

between being two, three, or four standard deviations above the mean of

𝑋1. As before, the well‐specified quadratic estimates (solid circles) converge

to the true CR2. Now, however, the misspecified linear estimates (in hollow

circles) differ substantially from the true CR2. Intuitively, the linear model

recovers a local average treatment effect in the experiment; as a result, the fit of

the causalmodel estimated from the experiment is worsewhen the treatment

arms are further away from the mass of the feature in the population.
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Appendix Figure 1. Results of simulations

(A) Results of simulation 1
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(B) Results of simulation 2
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(C) Results of simulation 3: experiment (a)
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(D) Results of simulation 3: experiment (b)
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Notes: This figure presents results from our simulations. Panel (A) displays results from simu‐
lation 1: the purple line displays the true CR2, and dots show the mean estimated CR2 in simu‐
lations of different sizes. Panel (B) replicates Panel (A) for Simulation 2. Panel (C) replicates
Panel (A) for the first experiment in Simulation 3, and Panel (D) for the second experiment.
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Online Appendix D. Incorporating covariates

In themain text, we equated observable andmanipulable features. That is, we

assumed that all observed features could also be changed in an experiment.

This distinction is partly conceptual: since it is difficult to identify the causal

effect of these features, it is also difficult to identify the share of variation

they causally explain.

However, we may incorporate these covariates to compute the share of

variation causally explained within a subpopulation defined by a covariate.

Say a non‐manipulable variable 𝑀 is observed and treatment is randomly

assigned within𝑀. Then, a natural approach is to compute the best causal

model 𝑌𝐶
𝑋𝑂,𝑚 for each value 𝑚 of the non‐manipulable feature 𝑀, and then

compute {CR2
𝑚}𝑚∈supp(𝑀). This allows the analyst to report the share of varia‐

tion causally explained across subgroups (e.g., amongmen vs.women).We

do this in our application to blood pressure and salt intake.

Another approach, which we do not pursue, is to allow the causal model

in the general population to vary by the level of the covariate. Suppose the

analyst aims to assess the share of variation explained in the population

overall by a causal model which allows the effects of the feature of interest

to differ between subgroups. It is tempting to define the “combined” causal

model ̃𝑌𝐶
𝑋𝑂(𝑥𝑂) = ∑𝑚′∈supp(𝑀) 𝟙{𝑚 = 𝑚′}𝑌𝐶

𝑋𝑂,𝑚′(𝑥𝑂), which assigns to each unit

the value given by the causal model for that unitʼs subgroup. One might

then assess the fit of this model by evaluating the mean squared error of

̃𝑌𝐶
𝑋𝑂. To see why this approach is unreasonable, suppose for a moment that

there is no causal effect of 𝑋𝑂 on the outcome, but the subgroup𝑀 is highly

predictive of the outcome; then, ̃𝑌𝐶
𝑋𝑂 can easily achieve a very high fit, despite

𝑋𝑂 explaining none of the variation in 𝑌. The difficulty is that, when fitting

separate causal models in each sub‐group and then combining them, the

combined model allows for different “intercepts” for each sub‐group, and

hence overstates the share of variance explained.
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Online Appendix E. An impossibility result for monotonic measures

of goodness‐of‐fit

The main text discussed a particular feature of the CR2: the possibility that

the share of variance causally explained falls as more features are observed.

We claimed that this is an inherent attribute ofmeasures of variation causally

explained.We now formalise this claim through an axiomatic analysis.

Denote the set of features by 𝒳̂. Denote its power set by 2𝒳̂, with typical

element X. Given a potential outcome function 𝑌(⋅), a subset of features X, and
a distribution of features 𝑃𝑋, define a general measure of variation causally

explained as a function 𝜌𝑃𝑋,𝑌∶ 2
𝒳̂ → ℝ such that, if (𝑃𝑋, 𝑌) and ( ̂𝑃𝑋, ̂𝑌 ) induce the

same joint distribution of 𝑌 and the features in X, and induce the same average

potential outcome as a function of the features in X, then 𝜌𝑃𝑋,𝑌(X) = 𝜌 ̂𝑃𝑋,𝑌̂(X).
22

We begin by describing three axioms.

Axiom 1 (Completeness). A general measure of variation causally explained

satisfies completeness if the measure is equal to one whenever the full set of features

is observed: 𝜌𝑃𝑋,𝑌(𝒳̂) = 1 for any 𝑃𝑋 and any 𝑌(⋅).

Axiom 2 (Limited information). A general measure of variation causally ex‐

plained satisfies limited information if the measure is strictly less than one when‐

ever the observed data rule out the possibility that the full set of features has been

observed. Fix the set of observed features X. Denote the corresponding average poten‐

tial outcome function by 𝑌X. Suppose that the distribution of observed features, and

𝑌X, could not alone generate the population joint distribution of the outcome and

features. Then 𝜌𝑃𝑋,𝑌(X) < 1.

Axiom 3 (Monotonicity). A general measure of variation causally explained sat‐

isfiesmonotonicity if observing additional features causes the share of variation

explained to weakly increase. Formally, for any X ⊆ X′, 𝜌𝑃𝑋,𝑌(X
′) ≥ 𝜌𝑃𝑋,𝑌(X).

Motivation for axioms.When we say that no reasonable measure satisfies

no monotonicity, we mean that no measure satisfies monotonicity once we

restrict to measures that satisfy completeness and limited information.We

argue that any reasonable measure should have these properties. Say that a

measure did not satisfy completeness. Then, even observing all of the sources

of variation in the outcome, our measure would still indicate that we cannot

explain all the variation. This seems unreasonable. Essentially the converse

22This restriction is motivated by the fact that, even with observational data on 𝑌 and the
variables in 𝒳, and experimental data in which 𝒳 is randomly assigned and the resulting
values of 𝑌 are recorded, the analyst cannot identify anything that is not a function of the
joint distribution or the average potential outcome.
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intuition holds for limited information: if a measure does not satisfy limited

information, then it sometimes indicates that the observed features fully

explain variation in the outcome, even though there is no potential outcomes

function that is consistent with the view that there are no other determinants

of the outcome.We consider both of these axioms essential for a reasonable

measure of variation causally explained.

Logical independence. These axioms are logically independent: no pair of

axioms implies the third axiom. To see this, note that the standard measure

of predictive R2 satisfies completeness and monotonicity, but not limited

information. The CR2 satisfies completeness and limited information, but

not monotonicity. On the other hand, limited information and monotonicity,

but not completeness, are satisfied by a measure which trivially defines any

set of features to explain none of the variation in the outcome. This shows

that this description of axioms does not involve any redundancy.

Impossibility.We now state and prove an impossibility result.

Proposition A1. No general measure of the share of variation causally explained

satisfies completeness, limited information, and monotonicity.

Proof of Proposition A1. We prove the result by way of a simple example. Say

thepotential outcome function is𝑌(𝑋1, 𝑋2, 𝑋3) = 𝛾𝑋1+𝛽𝑋2+𝛽𝑋3, for 𝛾 ≠ 0, 𝛽 ≠ 0,
where 𝑋2 and 𝑋3 are perfectly negatively correlated, and 𝑋1 is independent of
𝑋2 (and hence 𝑋3). Denote this population distribution of features by 𝑃𝑋, and
its marginal distributions by 𝑃1𝑋 , 𝑃2𝑋 , and 𝑃3𝑋 , respectively. Denote by 𝑃

1,2
𝑋 the

joint distribution of the first and second features.

Suppose by way of contradiction that there is such a measure, 𝜌. Com‐

pleteness requires 𝜌𝑃𝑋,𝑌({𝑋1}) = 1. To see this, say there is only one feature,

𝑋1, with distribution 𝑃1𝑋 , and the potential outcome function is ̂𝑌 (𝑋1) = 𝛾𝑋1.
Completeness requires 𝜌𝑃1𝑋,𝑌̂({𝑋1}) = 1. Since these two cases induce the same

distribution of the outcome and observable features, and have the same

average potential outcome, we must also have 𝜌𝑃𝑋,𝑌({𝑋1}) = 1.
The second step is to argue limited information requires 𝜌𝑃𝑋,𝑌({𝑋1, 𝑋2}) < 1.

This is because, if (𝑋1, 𝑋2) are observed, the average potential outcome func‐

tion is 𝛾𝑥1+𝛽𝑥2+𝛽𝔼[𝑋3]. This average potential outcome, and the population

distribution of observed features, could not generate the population joint dis‐

tribution of the outcome and features, since, in the population,𝑌 and𝑋2 are in‐
dependent. By consequence, limited information requires 𝜌𝑃𝑋,𝑌({𝑋1, 𝑋2}) < 1.

The third step is to note that applying monotonicity to 𝜌𝑃𝑋,𝑌({𝑋1}) = 1 gives
𝜌𝑃𝑋,𝑌({𝑋1, 𝑋2}) ≥ 1. Since the second and third steps contradict one another,

we have shown that no measure can satisfy all three axioms.
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Our conclusion from Proposition A1 is that, once we restrict attention

to “reasonable” measures, the possibility of non‐monotonicity is inevitable.

Intuitively, when we seek to predict an outcome, knowing more features can

only be helpful. When we seek to causally explain an outcome, observing an

additional feature can “set us back”, indicating that the feature suppresses

rather than generates variance in the outcome.
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Online Appendix F. Details of applications

F.1 Details of application 1

Data. The data are made available by Kremer et al. (2011) via Harvard

Dataverse.

Processing and cleaning. We restrict both the experimental and obser‐

vational samples to springs.With this restriction, there are 274 units in the

observational sample, and 726 units in the experimental sample.

F.2 Details of application 2

Data. The data are made available in Achilles et al. (Tennesseeʼs Student

Teacher Achievement Ratio (STAR) project).

Processing and cleaning. For the experimental dataset, we restrict atten‐

tion to students with non‐missing schools, class sizes, reading scores, and

math scores in each of grades K–3. For the observational dataset, we have

access to studentsʼ information only in Grades 1–3; we restrict attention to

students with non‐missing data in those years. For each student in the exper‐

imental (observational) data, we express reading and math scores in grades

K‐3 (1‐3) in percentage points, and then take the unweighted mean over the

grades for each of reading andmath scores.We use this mean as our outcome

variable. For each student in the experimental (observational) data, we com‐

pute the mean class size in grades K‐3 (1‐3), and use this mean as our feature

variable of interest.

Complier characteristics. Following the approach described in Abadie

(2003) and Hull (2025), we assess the characteristics of the complier group

through a two‐stage least‐squares regression of the form

Class size𝑖 × 𝑐𝑖 = 𝛾 + 𝛿Class size𝑖 + 𝜖𝑖(C9)

Class size𝑖 = 𝜁 + 𝜃Assigned small𝑖 + 𝜂𝑖,(C10)

where 𝑐𝑖 is the characteristic of interest. In each case, we first demean the

characteristic of interest so a test for the null hypothesis that 𝛿 ≠ 0 can be

interpreted as a test for the null hypothesis that the mean value of the charac‐

teristic among compliers is the same as the mean value of the characteristic

among non‐compliers.

We run these regressions in the experimental sample. Appendix Table 1 re‐

ports the two‐stage least‐squares coefficients from these regressions. Compli‐

ers are similar to non‐compliers in terms of gender, race, and socioeconomic

status, as proxied by free and reduced lunch receipt. This is consistent with
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the observation in Krueger (1999) that the rate of compliance was high.

Appendix Table 1. Complier characteristics in Tennessee STAR

Male

(1)

Minority

Race

(2)

FRL

Recipient

(3)

Constant 0.37 1.10 ‐1.94

(1.369) (1.233) (1.201)

Coefficient ‐0.02 ‐0.05 0.10

(0.067) (0.061) (0.059)

Observations 2529 2529 2529

Notes: This table presents estimates of (𝛾, 𝛿) from two‐stage least‐squares regressions corre‐

sponding to equations (C9) and (C10) for three student characteristics 𝑐𝑖. The first row shows

the estimated value of 𝛾, and the third row shows the estimated value of 𝛿 (with corresponding

standard errors in the second and fourth rows, respectively). The fifth row shows the number

of observations. In column (1), 𝑐𝑖 is an indicator variable for the student beingmale. In column

(2), 𝑐𝑖 is an indicator variable for the student not being white. In column (3), 𝑐𝑖 is the share of
years in grades K–3 that the student has free or reduced lunch status.

First stage. Next, we consider the first‐stage relation between treatment

assignment and class size. Appendix Table 2 presents estimates of equation

(6).We present estimated first stages for grades K–3, as well as for the average

class size over these grades, which we use as our ultimate variable of interest.

The effects of treatment assignment are large and highly significant, with

𝐹‐statistics well above 1,000.

Appendix Table 2. First stage in Tennessee STAR

Class size

grade K

(1)

Class size

grade 1

(2)

Class size

grade 2

(3)

Class size

grade 3

(4)

Class size

avg. K‐3

(5)

Constant 22.24 22.40 22.19 22.25 22.27

(0.046) (0.062) (0.068) (0.078) (0.045)

Assigned small ‐7.28 ‐6.43 ‐6.45 ‐6.05 ‐6.55

(0.082) (0.111) (0.121) (0.140) (0.081)

Observations 2771 2771 2771 2771 2771

F‐statistic 7979.672 3336.140 2844.131 1860.067 6518.657
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Notes: This table presents estimates of (𝜋𝐶, 𝜌𝐶) from an OLS regression corresponding to

equation (6) in the experimental data. The first row shows the estimated value of 𝜋𝐶, and the

third row shows the estimated value of 𝜌𝐶 (with corresponding standard errors in the second

and fourth rows, respectively). The fifth row shows the number of observations. The sixth

row shows the 𝐹‐statistic. In each column, the outcome variable is the number of students in

the childʼs class, varying the grade in which this number is measured.

Best predictive and causal models. Next, we estimate the best predictive

and causal models. Appendix Table 3 presents estimates of equations (8)

(Panel A) and (7) (Panel B). In both the best predictive and best causal mod‐

els, class size has a reasonably large and statistically significant effect on

test scores, but the effect is substantially smaller in the best causal model,

which is consistent with omitted variables biasing the observational relation

downward relative to the true causal effect.

Appendix Table 3. Best predictive and causal models in Tennessee STAR

Reading

(1)

Math

(2)

A. Best predictive model (observational data)

Constant 121.36 111.16

(5.643) (4.309)

Class size ‐1.56 ‐0.91

(0.243) (0.186)

Observations 501 501

B. Best causal model (experimental data)

Constant 93.10 94.86

(1.411) (1.137)

Class size ‐0.32 ‐0.23

(0.069) (0.055)

Observations 2771 2771

Notes:This table presents the best predictive and causalmodels in the STAR setting. Column (1)

presents results for reading scores, and column (2) for math scores. Panel A shows estimates

of (𝛼𝑃
𝑠 , 𝛽𝑃

𝑠 ) from an OLS regression corresponding to equation (8) in the observational data,

for subjects 𝑠 corresponding to reading and math scores. The first row shows the estimated

value of 𝛼𝑃
𝑠 , and the third row shows the estimated value of 𝛽𝑃

𝑠 (with corresponding standard

errors in the second and fourth rows, respectively). The fifth row shows the number of obser‐

vations. Both class size and test scores are averaged over grades. Panel B replicates Panel A,

instead presenting estimates of (𝛼𝐶
𝑠 , 𝛽𝐶

𝑠 ) from a regression corresponding to equation (7) in

the experimental data.

Fit of the best predictive and causalmodels. Finally, we assess the fit of the

best predictive and causal models. Appendix Table 4 summarizes our results.
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Panel A shows the variance of test scores and the mean squared error of the

best predictive and causal model, i.e. the variance of the residuals.

Panel B shows the corresponding shares of variance causally explained,

that is, 1 −MSE/Var[Score]. These values are computed directly from Panel

A. As shown in Figure 2(a), class size explains much more predictively than

causally.

Panel C presents various hypothesis tests, computed by bootstrapping.We

reject that the causal R2 for reading is zero at the 1% level: that is, we reject

the null hypothesis that class size causally explains no variation in reading

scores.We cannot reject the corresponding null hypothesis for math scores

at the 5% level, though the difference between reading and math scores is

itself insignificant.

Appendix Table 4. Share of variance in test scores causally explained by class size

Reading

obs. data

(1)

Reading

exp. data

(2)

Math

obs. data

(3)

Math

exp. data

(4)

A. Outcome variance andMSE

Var[Score] 146.15 112.89 82.52 73.29

MSE[Best predictive model] 135.02 – 78.71 –

MSE[Best causal model] 142.34 111.74 81.21 72.56

B. Share of variance explained

% of var. predictively explained in pop. (obs. R2) 7.62 – 4.62 –

% of var. causally explained in exp. (exp. R2) – 1.02 – 1.00

% of var. causally explained in pop. (CR2) 2.61 – 1.59 –

C. Hypothesis tests

CR2 for read = 0 0.009

CR2 for math = 0 0.059

CR2 for read = CR2 for math 0.1540

Notes: This table presents the share of variance in test scores causally explained by variance in class size.

The first two columns present results for reading scores. Column (1) presents results in the observational

data, and column (2) in the experimental data. Columns (3)‐(4) replicate columns (1)‐(2) for math scores.

Panel A shows the outcome variance and mean squared error of the models. Panel B shows the share of

variance explained. Panel C shows hypothesis tests involving the CR2, computed using the bootstrapping

described in subsection 5.3.

F.3 Details of application 3

Data. The data are made available by Acemoglu, Johnson, and Robinson

(2001) via Daron Acemogluʼs website.

Processing and cleaning. Following Acemoglu, Johnson, and Robinson
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(2001), we define income as the logarithm of per capita GDP in 1995, and

average protection against expropriation as the average of 1985–1995 values

of protection against expropriation assigned by Political Risk Services.

Complier characteristics.Appendix Table 5 replicates Appendix Table 1 for

this application.There is some evidence that compliers are not geographically

representative of the full sample: they are less likely to be drawn from Africa,

and perhaps a little more northern. Thankfully, Acemoglu, Johnson, and

Robinson (2001) show that their results are similar in Africa vs. outside.

Appendix Table 5. Complier characteristics in Acemoglu et al. (2001)

Africa

(1)

Asia

(2)

Latitude

(3)

Constant 17.02 ‐5.28 ‐4.00

(4.224) (2.800) (1.170)

Coefficient ‐2.65 0.83 0.62

(0.644) (0.427) (0.178)

Observations 64 64 64

Notes: This table replicates Appendix Table 1 in the context of Acemoglu, Johnson, and Robin‐

son (2001). In column (1), the characteristic is an indicator for the country being in Africa. In

column (2), the characteristic is an indicator for the country being in Asia. In column (3), the

characteristic is the countryʼs latitude.

First stage.We estimate equation (9). Our results replicate column (9) in

Table 3 of Acemoglu, Johnson, and Robinson (2001).

Best predictive and causal models.We then estimate the best predictive

and causal models. Appendix Table 6 replicates Appendix Table 3 in the

context of Acemoglu, Johnson, and Robinson (2001).23 Protection against ex‐

propriation risk is positively related to log GDP per capita, both predictively

and causally. The causal coefficient is somewhat larger than the observa‐

tional coefficient, which Acemoglu, Johnson, and Robinson (2001) attribute

to measurement error in expropriation risk.

23We include Appendix Table 6 for completeness, though both panels of the table are con‐
tained inAcemoglu, Johnson, andRobinson (2001): the slope coefficient in PanelA corresponds
to the coefficient in column (2) of their Table 2, and the slope coefficient in Panel B corresponds
to the coefficient in column (1) of their Table 4.
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Appendix Table 6. Best predictive and causal models in Acemoglu et al. (2001)

Log GDP per Capita

(1)

A. Best predictive model

Constant 4.66

(0.409)

Protection against expropriation risk 0.52

(0.061)

Observations 64

B. Best causal model

Constant 1.91

(1.011)

Protection against expropriation risk 0.94

(0.154)

Observations 64

Notes: This table replicates Appendix Table 3 in the context of Acemoglu, Johnson, and Robin‐

son (2001).

Fit of the best predictive and causal models. Finally, we compute the fit of

the best predictive and causal models (Appendix Table 7). Panel A presents

the variance of the outcome and mean squared error for the best predictive

and causalmodels, i.e. the variance of the residuals. The best predictivemodel

for GDP, as a linear function of expropriation risk, reduces the mean squared

error bymore than half; in consequence, the predictive R2 is very high.24 The

best causal model reduces MSEmuch less.

Panel B presents the corresponding share of variance predictively and

causally explained. The point estimates indicate that institutions predict

more than half of the variation in national income, and causally explain

around one fifth. Panel C shows, however, that this estimated CR2 is noisy:

for instance, we cannot reject the hypothesis that institutions explain no vari‐

ation in income. This noise comes from using few countries in the analysis.

24Note that the measurement error in expropriation risk, which Acemoglu, Johnson, and
Robinson (2001) posit, would imply that the true predictive R2 is even higher.
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Appendix Table 7. Share of variance in GDP causally explained by institutions

Value

(1)

A. Outcome variance andmean squared error

Var[Log GDP] 1.07

MSE[Best predictive model] 0.49

MSE[Best causal model] 0.87

B. Share of variance explained

% of var. predictively explained in pop. (obs. R2) 54.01%

% of var. causally explained in pop. (CR2) 18.69%

C. Hypothesis tests

CR2 = 0 0.17

Notes: This table replicates Appendix Table 4 in the context of Acemoglu, Johnson, and Robin‐

son (2001).

Comparison of institutions and childhood malaria as causes of cross‐

country income differences. To show how to use CR2 to compare different

causes of variation, we use data on the effect of malaria in childhood on

national income from Bleakley (2010).25 We first express the treatment ef‐

fect in Bleakley (2010) as a treatment effect on adulthood income per unit

of childhoodmalaria incidence. In historical US data, Bleakley (2010) finds

an income effect of 0.16 log points for cohorts moving from the 95th to 5th

percentile of pre‐eradication malaria intensity (Table 5, averaging results

using the Occupational Income Score and Duncanʼs Index). To put this effect

into units of incidence, we calculate the difference in pre‐eradicationmalaria

childhood incidence between 95th and 5th percentile areas. Maxcy (1923)

indicates that annual malaria mortality is 17.8 per 10,000 people in the 95th

percentile and zero in the 5th percentile; the case fatality rate is 0.5%. As

such, we estimate the difference in total population incidence between the

95th and 5th percentile to be 35.6%. Following GiveWell (2023), we adjust this

population incidence to childhood incidence using the fact that childhood

incidence in the U.S. is about 1.35 times population incidence, i.e.wemulti‐

ply population incidence by 1.35. The treatment effect in units of childhood

malaria incidence is thus 0.33 log points, or a 39.5% increase in adulthood

income from eradication.

Second, we gather data on childhood malaria incidence for the sample in

Acemoglu, Johnson, and Robinson (2001). The GDP per capita data in that

25We base our calculation partly on the methodology in GiveWell (2023).
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paper is measured in 1995. Ideally, we would use incidence data from around

1960: cohorts that were adults in 1995. However, historical global data is

sparse.We therefore rely on the earliest data from the Malaria Atlas Project

(2026), year 2000.26 While the malaria parasite prevalent in the Americas was

probably mostly Plasmodium vivax (Bleakley 2010), much Malaria around the

world today is Plasmodium falciparum. The data includes both P. vivax and

P. falciparum incidence,27 and we apply the causal effect of Bleakley (2010)

to both. We also make a transportability assumption. We use the effect in

Bleakley (2010) estimated in theUShistorically, and apply it to other countries

in 2000. We also multiply the incidence data by 1.35 as described above to

approximate childhood incidence from total population incidence.We then

calculate the CR2 of malaria in childhood.

F.4 Details of application 4

Data. The observational data are available from the UK Data Service under

study number 6533.

For our experimental data, we use the DASH‐Sodium experiment.We con‐

struct the estimated pooled causal effect of sodium using Figure 1A of Sacks

et al. (2001), and the estimated causal effects by gender using Figure 2A of

Sacks et al. (2001). The study recruited 412 U.S. participants with normal,

high‐normal, or high blood pressure.28 These people were randomised into a

control group and six treatment groups. Each treatment was a combination

of 1) a typical US diet vs. a healthy diet and 2) low, intermediate, or high

salt levels (50, 100, and 150 mmol sodium per day respectively). Study staff

prepared the food, and participants got all their meals and snacks at an out‐

patient clinic. After a two‐week run‐in period during which everyone ate

a high‐sodium control diet, participants followed their assigned treatment

diet for 30 days. At the end of the month, researchers measured participantsʼ

blood pressure, which is the main outcome of the study.

Best predictive and causal models. We estimate the best causal model

in equation (11) using Figure 1A of Sacks et al. (2001).We estimate the best

predictive model in the observational data.

26The distribution of Malaria has changed somewhat between 1960 and 2000 (Hay et
al. 2004).

27The variable we construct is the sum of the incidence rates for both parasite types (the
number of newly diagnosed malaria cases per 1,000 population, in a given year).

28USguidelines onwhat bloodpressure is normal or highhas changed over time. At the time
of the study, a blood pressure of 125 mmHg systolic and 85 mmHg diastolic was considered
normal (Joint National Committee on Prevention Detection Evaluation and Treatment of High
Blood Pressure 1997). Some current guidelines (e.g., Whelton et al. 2018) would consider it
high. The study required participants to have a diastolic blood pressure of 80–95 mmHg and a
systolic blood pressure of 120–160 mmHg.
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Fit of the best predictive and causalmodels.Appendix Table 8 summarizes

our results. Panel A shows that, both pooling genders and formen andwomen

separately, the best predictive and causal models reduce mean squared error

relative to the baseline variance of blood pressure. This reduction is much

smaller for women. In consequence, the share of variance explained for

women is substantially lower than for men.

Appendix Table 8. Share of variance in blood pressure causally explained by salt intake

Pooled

(1)

Men

(2)

Women

(3)

A. Outcome variance andmean squared error

Var[BP] 286.38 255.74 305.06

MSE[Best predictive model] 271.61 237.86 299.63

MSE[Best causal model] 271.75 238.13 302.73

B. Share of variance explained

% of var. predictively explained in pop. (obs. R2) 5.16% 6.99% 1.78%

% of var. causally explained in pop. (CR2) 5.11% 6.89% 0.76%

Notes: This table replicates Appendix Table 4 for our application to the share of variation in

blood pressure explained by salt intake.
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